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1 Introduction

In this section the notion of classifying spaces and group cohomology will be reviewed.
These theories are necessary to get into the Lyndon-Hoschild-Serre Spectral sequence
and study its applications.

Throughout this section G will denote a topological group.

Definition 1. A left G-space is a topological space X equipped with a continuous
left G-action G x X - X. If X and Y are G-spaces, a G-equivariant map is a map
f:X =Y such that f(g-z) =g f(x) for any x € X, g € G. A G-homotopy between
G-maps f, g is a homotopy F': X x I - Y in the usual sense, with the added condition
that F' be G- equivariant (here G acts trivially on the I coordinate).

This yields the G-homotopy category of left G-spaces. Similar definitions apply to
right G-spaces.

Definition 2. let B be a topological space. Suppose that P is a right G-space
equipped with a G-map 7 : E -~ B where G acts trivially on B We say that (P,7)
principal G-bundle over B if it satisfies the following local triviality condition:

B has a covering by open sets U such that there exist G-equivariant homeomorphisms
¢y 7 (U) - U x G commuting in the diagram

NU) 2 Uxa

U

Where U x G has the right G-action (u,g)h = (u, gh).

Note this condition implies that G acts freely on P, and that 7 factors through a
homeomorphism P/G — B (thus B “is” the orbit space of P).



Summarizing: A principal G-bundle over B consists of a locally trivial free G-space
with orbit space B.

Given a principal G-bundle P over B and a map [ : B’ - B, we can form the pullback
f*P = B’ xg P which inherits a natural structure of principal G-bundle over B’. The
next results classify the principal G-bundles over a given topological space.

Lemma 3. Let B be topological space and P a principal G-bundle over B, suppose
that X is a CW-complex and that f,g : X — B are homotopic maps. Then the
pullbacks f*P and g* P are isomorphic as principal G-bunldes over X.

This result leads to the following classification theorem.

Theorem 4. Suppose that there exists P — B a principal G-bundle with P con-
tractible. Denote by [X, B] the homotopy classes of maps X - B and Pg(X) the set
of principal G-bundles over X up to isomorphism. Then the map [X, B] - Pg(X)
giwen by f— f*P is a bijection.

Moreover, we have that

(i) B can be taken to be a CW -complez.
(it) B is unique up to canonical homotopy equivalence.
(#ii) P is unique up to G-homotopy equivalence.

We then call B a classyfing space for G and P a universal G-bundle. For this theory
to be of any use, we need to know that classyfing spaces exist. The next theorem i s
due to [Milnor]

Theorem 5. Let G be a topological group group. Then there exists a classifying space
BG and an universal G-bundle EG for G.

Recall that a map p : £ — B of topological spaces is called a fibration if for any
topological space Y and any commutative diagram

Yx{o} 1+ g
<

G -

Y x1I B

F

That means, any homotopy F' : Y x I — B with initial condition f :Y — E can be
lifted into a homotopy G : Y x I - E. In particular, if B is path connected, the space
Fy, = p1(b) does not depend on the choice of b up to homotopy; we call F' := F}, the
fiber.

In particular, if (E,7) is a principal G-bundle, it is a fibration with fiber G.

The main relation that we concern between principal G-bundles and fibrations is given
by the following result.



Proposition 6. 1. Suppose that H is an admissible subgroup of G, i.e. H is
such that the induced action of H on G makes the map G - G/H a principal
H-bundle, then there is a fibration induced by the inclusion H - G

BH - BG

with fiber G/H up to weak equivalence. Moreover, the inclusion of the fiber
G/H — BH classifies the principal H-bundle G - G/H.

2. Suppose that H is an admissible normal subgroup of G. Then there is a fibra-
tion BG - B(G/H) induced by the quotient map G — G[H with fiber BH up
to weak equivalence.

Definition 7. Let G be a topological group and BG its classifying space, we define
the group cohomology ring of G with coefficients in the group A as the usual singular
cohomology for topological spaces

H*(G;A):= H*(BG;A)



Now we pass to review some generalities on Homological algebra and the approach to
group cohomology.

Let A, B,C, M be left R-modules. Recall that if the sequence
0-A-B->C-0

then
0 - hom(C, M) - hom(B, M) — hom(A, M)
is exact.
Now consider a projective resolution P, =---P; —» Py > A - 0 of R-modules over A.

And consider the exact sequence

0 - hom(A, M) - hom(Py, M) - hom(Py, M) — --

And define
Ext% (A, M) = H,,(hom(Ps, M))

that is, the n-th homology of the chain complex hom(P,, M)

Let G be a group and let ZG be its integral group ring. This means that as an
additive group ZG is the free abelian group with the elements of G as a basis, and
multiplication within the ring is determined by multiplication of the basis elements,
which is multiplication in G. A typical element of ZG is a formal sum Y. .5 Ayz with
Az € Z where all but finitely many A, are zero.

The formula for multiplication of two general elements is

Z A - Z Hy¥ = Az yec(Aztty)TY

reX yeG
We denote by Z the ZG-module which is Z as an additive group, and where the action
of G is trivial, i.e. gn =n for all n € Z and g € G. This defines the (left) trivial module,
the right trivial module being defined similarly.

Definition 8. Let G be a topological group, we define the n-th cohomology group of
G with coefficients in the left ZG-module M to be

H"(G, M) = Exty(Z, M)
The next result relate the two definitions of group cohomology given so far:

Theorem 9. Let G be a topological group and R be a commutative ring, there is a
natural map
H"(G,R)® H"(G,R) - H""™(G,R)

that makes H*(G, R) into a graded commutative ring. Moreover, there is a ring
isomorphism
H*(G,R) 2 H*(BG,R)



We now start to explore these cohomology groups by identifying them in low degrees
and by construction of some particular resolutions of Z. We define a mapping e :
Z.G — 7 by the assignment g — 1 for every g € G, extended by linearity to the whole
of ZG. Thus the effect of € on a general element of ZG is

€(0geGAgg) = TgecAg

This is the augmentation map and it is a ring homomorphism, and also a homomor-
phism of ZG-modules. We write IG := ker(e) and this 2-sided ideal is called the
augmentation ideal of ZG. Because € is surjective we may always use it to start a
projective ZG-resolution of Z, and evidently Z ¥ ZG/IG. If G is finite we will also
consider the element N = g € GG, g € ZG which is sometimes called the norm element.

If M is a ZG-module we write M := {m € Mgm = m for all g € G}or the fixed
points of G on M and Mg := M/ < gm —mm € M,g € G > for the fixed quotient or
cofixedpoints of G on M.

Proposition 10. Let M be a ZG-module.

1. The set {g—1|1+ge G} is a Z-basis for IG.

2. H*(G,M) = homyg(Z, M) = M. The fized point set M coincides with the
set of elements of M anihilated by IG.

The main example of cohomology of finite groups is the following

Example 11. Let G = (g) be a finite cyclic group and M a ZG-module. Then for all
n > 1 we have
H*™ NG, M) = H (G,M) 2ker(N)/(IG- M)

and
H?>™(G,M) = H*(G,M) = M°|(N - M)

To prove it, consider the following periodic resolution

d
- 7G
1G Z
where d;(1) = g -1 and do(1) = N. If we apply the functor homyg(, M) we get a
complex

d

/:ZG\ /:ZG

2
-N 1G

0-MIE S S o

where N and g — 1 denote the maps which are multiplication by these elements. We
take the homology of that complex to obtain the result, using the fact that the kernel
of g —1 is the fixed point by Proposition 10.



2 Spectral Sequences

In this section we introduce the main computational technique for determine cohomol-
ogy rings. We start with the general algebraic approach of a spectral sequence, that
leads to particular geometrical cases such as the Serre spectral sequence for fibrations
or the Lyndon-Hoschild-Serre spectral sequence for resolutions of ZG-modules.

A Z-bigraded module is a family E = {E,,} one for each pair of indices p,q =
£0,1,2,.... A differential d : E - E of bidegree (-7, — 1) is a family of homo-
morphism {d : E, ; = Ep_ g+r—1 With d> = 0. The homology H(E) = H(E,d) of E
under this differential is the bigraded module {H,, ,(F)} defined in the usual way as

Hy, o(E) =ker(d: Ep g = Ep—r gir-1)/dEpsr g-rs1

Definition 12. A spectral sequence F = {E",d"} is a sequence E2, E3, ... of bigraded
Z-modules each with a differential d” of bidegree (-7, — 1) and with isomorphism

H(Er,dr) ~ Er+1

for r =2,3,.... If £’ is another spectral sequence, a morphism of spectral sequences
f:+E - E'is a family of homomorphism f" : E" — E'" of bigraded modules, each
of bidegree (0,0) with d”f" = f"d" and such that f"*! is the map induced by f” on
homology.

A first quadrant spectral sequence E is one with E; . =0 when p <0 or ¢ < 0. For
cohomology, we write

P4 _ [T
ET _E—p,—q

and now the differentials are d,. : EP*9 — EP*"47"*1 of bedegree (r,1-r) and H(E,,d,.) =
Er+1 .

It is convenient to display the EF'9 modules at the lattice points of the first quadrant
of the p, q plane

Fos
s
-]

£ E¢

Figure 1: Page E5 and F3 of a homology spectral sequence



When the cohomology spectral sequence is considered, just reverse the direction of
the arrow.

In general, for a homology spectral sequence, we have that E” 2 C"/B" where C" =
ker d® and B"imd". We have a tower

0=B'cB*c..cC?cC'=E,

of bigraded submodules of F5. Define the modules C*° = N,5,C" and B* = U, B",
then B* ¢ C*°, and therefore the spectral sequence determines a bigraded module

Ex, =2Cr. /By,

Pg = “'p.g
In this case, we say that the spectral sequence converges to E*°, and we write
FE?* = E*.

The following theorem is due to Serre [1951] following Leray’s construction [1946,1950]
that relates spectral sequences with fibrations.

Theorem 13 (Leray-Serre). Suppose that f : E — B is a fiber map with base B
pathwise connected and simply connected, and fiber F' pathwise connected. There is a
first quadrant spectral sequence E5 associated to the fibration such that
EPY = HP(B,H(F))
and
@ B = H(E)
p+q=n

Another way of constructing spectral sequences is via filtered modules. We begin with
the following definitions

Definition 14. A filtration F' of a module A is a family of submodules Fj, A one for
each p € Z with
~CFy1ACF,AcFy Ac

Each filtration determines an associated graded modulde G¥' A where
GFA,=F,AcF, 1A

. In the case where A is a differential Z-graded module, the filtration induces a fil-
tration on the Z-graded module H(A). Also, the family F},A,, is a Z bigraded module.

A spectral sequence (F,d) is said to converge to a graded module H (in symbols,
E — H) if there is a filtration F' of H and for each p isomorphisms Ep° = F,H[F, 1 H

The associated spectral sequence of a filtration may now be defined and given by the
following result.



Theorem 15. Fach filtration F of a differential graded Z-module A determines a
spectral sequence (E",d") together with natural isomorphism

By q 2 Hprg(FyA[Fyar A)

Pq =

and
B, Fp(Hp+qA)/Fp—1Hp+qA

P,q =

The filtration F' of a DG-module A is canonically bounded if F_.1A =0 and F,A,,=
A, in each degree n.

Theorem 16. If F' is a canonically bounded filtration of a positively graded DG-
module A , the spectral sequence of F' lies in the first quadrant and the induced filtra-
tion of HA 1is finite, of the form

0=F,1H,AcFyH,Ac---c F,H,A=H,A

with successive quotients

F,H,[F,  Hy 2 EF,
under isomorphisms induced by 1. For example, the LERAY-SERRE theorem arises
Jtom a canonically bounded filtration of the singular chains o] a fiber space.

Many useful filtrations arise from bicomplexes. A bicomplex K is a family K, , of
modules with two families
O Kpq > Kp-1,4

0" Kp,q > Kpg-1
of module homomorphism, defined for all integers p, ¢ and such that
8,2 — 6112 — 0
and
89" +9"9 =0

A bicomplex is positive if it lies in the first quadrant.

Each bicomplex K determines a single complexv X = Tot(K) as

X, = Z K, q

p,q=n

with differential 9 = 9" + 9" : X,, = X,,_; It is easy to check that 92 = 0.

We have a filtration, called the first Filtration F’ of X defined by the subcomplexes
F) with
(F,;X)n = Z Kk:,n—k
k<p
The associated spectral sequence of F is called the first spectral sequence E’ of the
bicomplex.



Theorem 17. For the first spectral sequence E' of a bicomplex K with associated
total complex X there are natural isomorphism

E, 22 H H"q(K)
If K is positive, E lies in the first quadrant and E' = H(X).

We are in conditions to state and prove the main theorem for computing group coho-
mology

Theorem 18 (The Lyndon-Serre-Hoschild Spectral Sequence). Let N be a normal
subgroup of G, and A be a ZG-module. There is a first quadrant spectral sequence
(E,d) natural in A, associated to the extension

1-N-G-GIN
with natural isomorphism

EPY = HP(G/N, HY(N, A) = H"*(G, A)

3 Computations on Group Cohomology

In this section we apply the Leray-Serre spectral sequence, and the Lindon-Serre-
Hoschild spectral sequence to compute the group cohomology of some groups.

Let G = Z/pZ and k = F,. Assume that there is a finite length kG-resolution Cy of
k where each C), is a finitely generated permutation module. More precisely, since G
has two subgroups, G and {1}, there exists finite sets I,, and J,, depending on n such
that

Cn=@5 k[G|Glo®, k[G/1].

We consider the subcomplex D, such that D,, = &5, k[G/G] = &, k. Now, let i: D, —
C, be the inclusion of subcomplex. Let P — Z be a ZG-module projective resolution.
We defined H,(G,C) := H*(TOT(PZ% (C)) and H,(G, D) := H*(Tor(PZ@éD)). Since

G acts trivially on D,, Kiinneth formula gives for every couple (p, q)

H,(G,D) 2 (&p+g=nHp(G, k) ® HyD) & (®p1g=n-1T0r1(Hy(G, k), HyD)).

Now k is a field so T'or1 (Hy,(G, k), H,D) = 0 for all p, g and H,,(G, D) = ®p1q-nH, (G, k)®
Hy(D). Hy(G k) 2k, thus H,(G,D) 2 @;_1 Hy(D).

Furthermore, we have a converging spectral sequence E | = Hy(G, H,C) = Hyyq(G, C).
But C is assumed to be of finite length so does the chain complex C/D and each
term is a free kG-module so they are all H,-acyclic. By proposition 5.6 page 170

of Brown’s Cohomology of Groups, we have a converging spectral sequence E;q =
Hy(G. H,(C/D)) = Hyy(C/D)c) = Hysy(G.C/D).

But we have the following short exact sequence 0 - D — C - C/D - 0 which
induces a long exact sequence in cohomology. But for ¢ >> 0 large enough we have
H;((C/D)¢) =0 and so H;j(G,C) = H;(G,D) for all j >i. So k=@;,,H,;(G,D).



Consider the following presentation of the quaternion group Qg := {o,7|oc* = 1,02 =

72,7071 =071}, We know that the subgroups of Qg are

Qs

N

<o > <O0T > <T>

v

0.2

{1}

and that each of them is normal. More precisely, Qg is a group of order 8, each of
the subgroups < ¢ >,< o7 > and < 7 > are cyclic maximal subgroups all isomorphic
to the cyclic group Z/47Z, < 0% > is the center of Qg and is isomorphic to the cyclic
group Z/2Z and {1} is the trivial subgroup. Therefore, the derived subgroup is
[Qs,Qs] = Z/27Z and the abelianization of Qs, Qs/[Qs,@s], is the Klein group <
[0],[7] >=Z/2Z x Z|2Z. We therefore have the following central group extension

1->7Z/27 - Qs - Z[2Z. x 7|27 — 1.
We know that

HY(Qs,Z/2Z) = Homcroups(Qs, Z[2Z) = Homan(Qs/[Qs, Qs], Z/2Z) = Z|2Z x Z|2Z.

That is, H'(Qs,Z/2Z) is the dual space to the Fo-vector space Qg/[Qs,Qs] of basis
{[¢],[7]}- Hence, the dual basis made of the two following maps z,y : Qs/[Qs, Qs] —~
Z[2Z characterized by

z([o]) = La([r]) =0, y([o]) = 0 and y([7]) = 1.

From the third assignment we know that H*(Z/27Z,7/2Z) = Fy[w] with |w| = 1 and as
seen in class, using Kiinneth formula, we find H*(Z/27 x Z[2Z,7./27) = F2[x,y] with
|z| = ly| = 1. Now, the quotient group Z/2Z x Z/2Z = Qs/[Qs,Qs] acts trivially on
H*([Qs,Qs],Z/27) since [Qs, Qs] = Z/27Z is the center of Qg. Therefore, the Fy-page
of the Lyndon-Hochschild-Serre spectral sequence of the central extension

1->Z[27 - Qs > Z|2Z x 7|27 — 1

E7, = H*(Qs/[Q&Qs]’H*([Q&Qs]vaZ)) = H"(Qs/[Qs, Qs], Z[2Z)®H ([Qs, Qs], Z2) = Fa[z,y, w]

16



where we used the universal coefficient theorem to get the first isomorphism. We
want to compute the image of ds : Eg’l - E22’0. On one hand, H'(Qs,Z/2Z) =
Z)27 x 7,)27 = Ey° = EL? so dy(w) # 0. On the other hand, E2° = H?(Z/2Z x
7./27, H*(Z|27.,7.]27)) = H*(Z]27 x 7|27, 7.]27) is generated by degree 2 homoge-
neous polynomials in the variables x and y. Thus, there exists a,b, c € F5 such that
dy(w) = ax® + bxy + cy?.

To find the coefficients, we use the restriction map on the subgroups of QJgs. We first
consider the following map of group extensions

1 Z]27Z Qs <[o],[r]>——1
l——><o?> <o> <[o]>—1

We define the restriction map res, = res o] [r]>.<[s]> ° HY(< [0],[7] >, Z/2Z) -
H'(<[0]>,Z/2Z) by = = res,(x) a generator of H' (< [¢] >,Z/2Z) and y 0.

We now look at the Lyndon-Hochschild-Serre spectral sequence associated to the
group extension

1 »<o?>s<o>><[0]>>1

(where we recall that < 02 >= Z/27, < o >= Z[4Z and < [o] >= Z/27). As before, the
group < [o] > acts trivially on H*(< o >,Z/27) so by the universal coefficient theorem
the 7 Ey-page is H*(< 02 >,Z/27) ® H*(< [o] >,Z/27Z) = H*(Z|2Z x Z|]27.,7.]27) =
Foa1, 2] with |a1| = [wa] = 1. Since H(< o >,Z/2Z) = Hom(Z/AZ,ZJ2Z) = 72T
the differential o :© Eg’l -7 E22’0 is nonzero because otherwise we would have
HY(Z/4,7)27) = 7|27 x 727 which can’t be because By = H*(Z/27 x 7|27, 7.]27.)
converges to H*(Z/AZ,7/2Z). Now, using the naturality of spectral sequences we get
the following commutative diagram

ds
By —— B2
% yesa
od
2
TEPT — B

Hence by commutativity, 0 # res, (dz2(w)) = res, (az? + bry + cy?) = ares,(x)?. But
resq () generates H'(< [0] >,Z/27) so a = 1.
We now consider the following map of group extensions

1 Z/27 Qs <[o],[7]>——1
l——><o?> <T> <[r]>—1

By definition, < [7] >=<[o] >
We define the restriction map res; = res (4] [r]>.<[r]> HY(< [o],[1] > Z/2Z) - H'(<
[7]>,Z/27) by 0 and y ~ res,(y) a generator of H' (< [7] >, Z/2Z).

17



We now look at the Lyndon-Hochschild-Serre spectral sequence associated to the
group extension

1 o<o?>s<r>o< 1] > 1

As before, the group < [7] > acts trivially on H*(< 7 >,Z/27) so by the univer-
sal coefficient theorem the T FEs-page is H*(< 0% >,Z/2Z) ® H*(< [r] >,Z/27) =
H*(ZJ27 x Z|]27.,7|27) = Fy[x3,74] with |w3| = |z3] = 1. Since H'(< 7 >,Z/27) =
Hom(ZJAZ,7,/27) = Z,/27Z the differential 75 .7 ES"' -7 E2 is nonzero for the same
reason as before. Now, using the naturality of spectral sequences we get the following
commutative diagram

da
l;ng 312;0

;l lresT
T

d
1 2 2,
TESN — TR

Hence by commutativity, 0 # res, (da(w)) = res, (ax?® + bry + cy?) = cres,(y)*. But
res,(y) generates H' (< [7] >,Z/27) so ¢ = 1.
We finally consider the following map of group extensions

1 Z]2Z Qs <[o],[r]>——1

o]

l——><o?> ——><or>——<[or]>——1

By definition, < [o7] >=<[o] >

We define the restriction map resyT := resc[o],(r]><[or]> * H' (< [0],[7] >, Z[2Z) -
H(<[o7] >,Z/2Z) by 2% + 0,y* = 0 and zy = res,,(zy) a generator of H(< [o7] >
NAVYAR

We now look at the Lyndon-Hochschild-Serre spectral sequence associated to the
group extension

2

1-o<0”>o<or>><[0o7] >> 1

As before, the group < [o7] > acts trivially on H*(< 7 >,Z/27Z) so by the univer-
sal coefficient theorem the °7 Ey-page is H*(< o2 >,Z/27) ® H*(< [oT] >,Z[27Z) =
H*(ZJ27 x 7|27, 7]2Z) = Fy[z5,76] with |zs| = |v6| = 1. Since H'(< o1 >,Z/27) =
Hom(ZJAZ,7,/27) = ZJ2Z the differential or¢ :°7 E" -7 E3° is nonzero for the
same reason as before. Now, using the naturality of spectral sequences we get the
following commutative diagram

da
12871 N l;gi

= T€Sor
oT

UTIEOJ 44:%% UTIEZO
2 2
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Hence by commutativity, 0 # 7eser(do(w)) = resqyr(az? + by + cy?) = bresqe,(zy).
But res,,(zy) generates H'(< [oT >,Z/27) so b= 1.
This shows that do(w) = 22 + zy + 2.

Now we compute the cohomology of the semi-direct product group G = (S')" x Z/2
with mod 2 coefficients for r > 1. Here H*(-) denotes H*(-,Z/2)

Let T denote (S*)". Recall that H*(BT) = Z/2[c1,...,¢ ], || =2 for alli=1,...,r
and H*(BZ/2) = Z[2[w], |w| =1 (See [?, Th 14.5].) To compute the cohomology of
G, the short exact sequence

1-T->G->7Z/]2->1
yields in a fibration of classifying spaces
BT - BG - BZ/2
where the Es page of the associated Leray-Serre Spectral sequence is given by

EPY~ H?(BZJ2; HY(BT)) = H*(BG)

since Z/2 acts on HY(BT) trivially. (In general the action of Z/2 = {+1} over
H9(BT;Z) is given by the induced action on the generators +1-¢; = £¢;).

Therefore, by the universal coefficient theorem we have a Z/2-algebras isomorphism
Ey, > H*(BZ/2)® H*(BT) 2 Z/2[w,c1,...,c],

and thus, the differential do depends only on the values on the generators w and ¢; be-
cause it is a derivation. Namely, d2(w) = 0 since w lies on the z-axis of the spectral se-
quence and da(¢;) =0foralli=1,...,7 since da(c¢;) € Eg’l = H*(BZ/2)® H'(BT) = 0.

It follows that dy = 0, implying that F3 = F5. Now we consider the differential ds;
as before, we only need to compute the map ds : Eg’Q - Eg’o. In this case, we have
d3(c;) = a;w® with either a; =0 or a; = 1.

The sub-extension

T

T %72 — Z/2

1

1%Z[2 — 7Z/2
induces a map of spectral sequences EP9 — EP9. where Ey = H*(BZ/2) is the F, page

of the spectral sequence associated to the bottom exact sequence. By the naturarlity
of the spectral sequences we have then a commutative diagram
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which implies that ds = 0 since the right vertical arrow is the identity map and ds = 0.

Notice that for 7 >4 E™3™" =0 an so is the differential d, : E2? - EI*™". Therefore,
the spectral sequence degenerates at page 2 and this implies that

Ey = Eo = H*(BZ/2) ® H*(BT) 2 Z/2[w,c1, ..., c;] = H*(BG)

Recall that the above isomorphism is a graded Z/2[w]-module isomorphism; how-
ever since H*(BT) is a polynomial algebra, we can choose a multiplicative section
¢ : H*(BT) - H*(BG) of the surjective map H*(BG) - H*(BT). It follows
from the Leray-Hirsch Theorem that such map together with the canonical map
p*: H*(BZ/2) - H*(BG) give rise to an isomorphism of graded H*(BZ/2)-modules

0:H*(BZ/2) ® H*(BT) - H*(BG)

given by 8(a® 8) = ¢(a)p*(B8). Moreover, the map 6 is an isomorphism of graded
Z/2-algebras since both ¢ and p* are multiplicative maps.

Furthermore, the restriction maps H*(BG) — H*(BZ/2) and H*(BG) — H*(BT)
induced by the inclusions, coincide with the projection of H*(BZ/2) ® H*(BT) on
each factor respectively via the isomorphism 6.

Summarizing, we have

Proposition 19. There is a graded Z[2-algebra isomorphism H*(BG) 2 Z[2[w, c1, ..., ¢;]
such that the canonical maps H*(BG) — H*(BT), H*(BG) - H*(BZ/2) and
H*(BZ/2) - H*(BG) coincide with the canonical restriction maps Z[2[w, c1, ..., cn] =
Z]2[c1y. .. cnl, Z)2[w, ey, ..., cn] = Z)2[w], and the canonical inclusion map Z[2[w] —
Z]2[w,cy,. .., cn] Tespectively.
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