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1 Introduction

In this section the notion of classifying spaces and group cohomology will be reviewed.
These theories are necessary to get into the Lyndon-Hoschild-Serre Spectral sequence
and study its applications.

Throughout this section G will denote a topological group.

Definition 1. A left G-space is a topological space X equipped with a continuous
left G-action G ×X → X. If X and Y are G-spaces, a G-equivariant map is a map
f ∶ X → Y such that f(g ⋅ x) = g ⋅ f(x) for any x ∈ X, g ∈ G. A G-homotopy between
G-maps f, g is a homotopy F ∶X ×I → Y in the usual sense, with the added condition
that F be G- equivariant (here G acts trivially on the I coordinate).

This yields the G-homotopy category of left G-spaces. Similar definitions apply to
right G-spaces.

Definition 2. let B be a topological space. Suppose that P is a right G-space
equipped with a G-map π ∶ E → B where G acts trivially on B We say that (P,π)
principal G-bundle over B if it satisfies the following local triviality condition:

B has a covering by open sets U such that there exist G-equivariant homeomorphisms
φU ∶ π−1(U)→ U ×G commuting in the diagram

π−1(U) U ×G

U

-φU

?

π

�
�

�
�
�	

p1

Where U ×G has the right G-action (u, g)h = (u, gh).
Note this condition implies that G acts freely on P , and that π factors through a
homeomorphism P /G→ B (thus B “is” the orbit space of P ).
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Summarizing: A principal G-bundle over B consists of a locally trivial free G-space
with orbit space B.

Given a principal G-bundle P over B and a map f ∶ B′ → B, we can form the pullback
f∗P = B′ ×B P which inherits a natural structure of principal G-bundle over B′. The
next results classify the principal G-bundles over a given topological space.

Lemma 3. Let B be topological space and P a principal G-bundle over B, suppose
that X is a CW -complex and that f, g ∶ X → B are homotopic maps. Then the
pullbacks f∗P and g∗P are isomorphic as principal G-bunldes over X.

This result leads to the following classification theorem.

Theorem 4. Suppose that there exists P → B a principal G-bundle with P con-
tractible. Denote by [X,B] the homotopy classes of maps X → B and PG(X) the set
of principal G-bundles over X up to isomorphism. Then the map [X,B] → PG(X)
given by f ↦ f∗P is a bijection.
Moreover, we have that

(i) B can be taken to be a CW -complex.

(ii) B is unique up to canonical homotopy equivalence.

(iii) P is unique up to G-homotopy equivalence.

We then call B a classyfing space for G and P a universal G-bundle. For this theory
to be of any use, we need to know that classyfing spaces exist. The next theorem i s
due to [Milnor]

Theorem 5. Let G be a topological group group. Then there exists a classifying space
BG and an universal G-bundle EG for G.

Recall that a map p ∶ E → B of topological spaces is called a fibration if for any
topological space Y and any commutative diagram

Y × {0} E

Y × I B

-f

? ?

p

-
F

p p p p p p
p p p p p�G

That means, any homotopy F ∶ Y × I → B with initial condition f ∶ Y → E can be
lifted into a homotopy G ∶ Y × I → E. In particular, if B is path connected, the space
Fb = p−1(b) does not depend on the choice of b up to homotopy; we call F ∶= Fb the
fiber.

In particular, if (E,π) is a principal G-bundle, it is a fibration with fiber G.

The main relation that we concern between principal G-bundles and fibrations is given
by the following result.
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Proposition 6. 1. Suppose that H is an admissible subgroup of G, i.e. H is
such that the induced action of H on G makes the map G → G/H a principal
H-bundle, then there is a fibration induced by the inclusion H → G

BH → BG

with fiber G/H up to weak equivalence. Moreover, the inclusion of the fiber
G/H → BH classifies the principal H-bundle G→ G/H.

2. Suppose that H is an admissible normal subgroup of G. Then there is a fibra-
tion BG → B(G/H) induced by the quotient map G → G/H with fiber BH up
to weak equivalence.

Definition 7. Let G be a topological group and BG its classifying space, we define
the group cohomology ring of G with coefficients in the group A as the usual singular
cohomology for topological spaces

H∗(G;A) ∶=H∗(BG;A)
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Now we pass to review some generalities on Homological algebra and the approach to
group cohomology.

Let A,B,C,M be left R-modules. Recall that if the sequence

0→ A→ B → C → 0

then
0→ hom(C,M)→ hom(B,M)→ hom(A,M)

is exact.

Now consider a projective resolution P∗ = ⋯P1 → P0 → A → 0 of R-modules over A.
And consider the exact sequence

0→ hom(A,M)→ hom(P0,M)→ hom(P1,M)→ ⋯
And define

ExtnR(A,M) ∶=Hn(hom(P∗,M))
that is, the n-th homology of the chain complex hom(P∗,M)

Let G be a group and let ZG be its integral group ring. This means that as an
additive group ZG is the free abelian group with the elements of G as a basis, and
multiplication within the ring is determined by multiplication of the basis elements,
which is multiplication in G. A typical element of ZG is a formal sum ∑x∈G λxx with
λx ∈ Z where all but finitely many λx are zero.

The formula for multiplication of two general elements is

∑
x∈X

λxx ⋅ ∑
y∈G

µyy = λx,y∈G(λxµy)xy

We denote by Z the ZG-module which is Z as an additive group, and where the action
of G is trivial, i.e. gn = n for all n ∈ Z and g ∈ G. This defines the (left) trivial module,
the right trivial module being defined similarly.

Definition 8. Let G be a topological group, we define the n-th cohomology group of
G with coefficients in the left ZG-module M to be

Hn(G,M) ∶= ExtnZG(Z,M)

The next result relate the two definitions of group cohomology given so far:

Theorem 9. Let G be a topological group and R be a commutative ring, there is a
natural map

Hn(G,R)⊗Hm(G,R)→Hn+m(G,R)
that makes H∗(G,R) into a graded commutative ring. Moreover, there is a ring
isomorphism

H∗(G,R) ≅H∗(BG,R)
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We now start to explore these cohomology groups by identifying them in low degrees
and by construction of some particular resolutions of Z. We define a mapping ε ∶
ZG → Z by the assignment g ↦ 1 for every g ∈ G, extended by linearity to the whole
of ZG. Thus the effect of ε on a general element of ZG is

ε(σg∈Gλgg) = σg∈Gλg
This is the augmentation map and it is a ring homomorphism, and also a homomor-
phism of ZG-modules. We write IG ∶= ker(ε) and this 2-sided ideal is called the
augmentation ideal of ZG. Because ε is surjective we may always use it to start a
projective ZG-resolution of Z, and evidently Z ≅ ZG/IG. If G is finite we will also
consider the element N = g ∈ G,g ∈ ZG which is sometimes called the norm element.

If M is a ZG-module we write MG ∶= {m ∈ Mgm = m for all g ∈ G}for the fixed
points of G on M and MG ∶= M/ < gm −mm ∈ M,g ∈ G > for the fixed quotient or
cofixedpoints of G on M .

Proposition 10. Let M be a ZG-module.

1. The set {g − 1∣1 ≠ g ∈ G} is a Z−basis for IG.

2. H0(G,M) = homZG(Z,M) ≅ MG. The fixed point set MG coincides with the
set of elements of M anihilated by IG.

The main example of cohomology of finite groups is the following

Example 11. Let G = ⟨g⟩ be a finite cyclic group and M a ZG-module. Then for all
n ≥ 1 we have

H2n+1(G,M) ≅H1(G,M) ≅ ker(N)/(IG ⋅M)
and

H2n(G,M) ≅H2(G,M) ≅MG/(N ⋅M)
To prove it, consider the following periodic resolution

. . . ZG ZG ZG Z 0

IG Z ⋅N IG

- -d2

Q
QQs

-d1

Q
QQs

-ε -

�
��3

�
��3

�
��3

where d1(1) = g − 1 and d2(1) = N . If we apply the functor homZG(,M) we get a
complex

0→M
g−1ÐÐ→M

NÐ→M
g−1ÐÐ→M

NÐ→M → ⋯
where N and g − 1 denote the maps which are multiplication by these elements. We
take the homology of that complex to obtain the result, using the fact that the kernel
of g − 1 is the fixed point by Proposition 10.
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2 Spectral Sequences

In this section we introduce the main computational technique for determine cohomol-
ogy rings. We start with the general algebraic approach of a spectral sequence, that
leads to particular geometrical cases such as the Serre spectral sequence for fibrations
or the Lyndon-Hoschild-Serre spectral sequence for resolutions of ZG-modules.

A Z-bigraded module is a family E = {Ep,q} one for each pair of indices p, q =
±0,1,2, . . .. A differential d ∶ E → E of bidegree (−r, r − 1) is a family of homo-
morphism {d ∶ Ep,q → Ep−r,q+r−1 with d2 = 0. The homology H(E) = H(E,d) of E
under this differential is the bigraded module {Hp,q(E)} defined in the usual way as

Hp,q(E) = ker(d ∶ Ep,q → Ep−r,q+r−1)/dEp+r,q−r+1

Definition 12. A spectral sequence E = {Er, dr} is a sequence E2,E3, . . . of bigraded
Z-modules each with a differential dr of bidegree (−r, r − 1) and with isomorphism

H(Er, dr) ≅ Er+1

for r = 2,3, . . .. If E′ is another spectral sequence, a morphism of spectral sequences
f ∶ E → E′ is a family of homomorphism fr ∶ Er → E

′r of bigraded modules, each
of bidegree (0,0) with drfr = frdr and such that fr+1 is the map induced by fr on
homology.

A first quadrant spectral sequence E is one with Erp,q = 0 when p < 0 or q < 0. For
cohomology, we write

Ep,qr = Er−p,−q
and now the differentials are dr ∶ Ep,qr → Ep+r,q−r+1r of bedegree (r,1−r) andH(Er, dr) ≅
Er+1.

It is convenient to display the Ep,qr modules at the lattice points of the first quadrant
of the p, q plane

Figure 1: Page E2 and E3 of a homology spectral sequence

6



When the cohomology spectral sequence is considered, just reverse the direction of
the arrow.

In general, for a homology spectral sequence, we have that Er ≅ Cr/Br where Cr =
kerd3 and Brimdr. We have a tower

0 = B1 ⊆ B2 ⊆ ⋯ ⊆ C2 ⊆ C1 = E2

of bigraded submodules of E2. Define the modules C∞ = ∩r≥2Cr and B∞ = ∪r≥2Br,
then B∞ ⊆ C∞, and therefore the spectral sequence determines a bigraded module

E∞
p,q ≅ C∞

p,q/B∞
p,q

In this case, we say that the spectral sequence converges to E∞, and we write

E2 ⇒ E∞.

The following theorem is due to Serre [1951] following Leray’s construction [1946,1950]
that relates spectral sequences with fibrations.

Theorem 13 (Leray-Serre). Suppose that f ∶ E → B is a fiber map with base B
pathwise connected and simply connected, and fiber F pathwise connected. There is a
first quadrant spectral sequence E2 associated to the fibration such that

Ep,q2 ≅Hp(B,Hq(F ))
and

⊕
p+q=n

Ep,q∞ ≅Hn(E)

Another way of constructing spectral sequences is via filtered modules. We begin with
the following definitions

Definition 14. A filtration F of a module A is a family of submodules FpA one for
each p ∈ Z with

⋯ ⊆ Fp−1A ⊆ FpA ⊆ Fp+1A ⊆ ⋯

Each filtration determines an associated graded modulde GFA where

GFAp = FpA ⊆ Fp−1A

. In the case where A is a differential Z-graded module, the filtration induces a fil-
tration on the Z-graded module H(A). Also, the family FpAn is a Z bigraded module.

A spectral sequence (E,d) is said to converge to a graded module H (in symbols,
E →H) if there is a filtration F of H and for each p isomorphisms E∞

p ≅ FpH/Fp−1H

The associated spectral sequence of a filtration may now be defined and given by the
following result.
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Theorem 15. Each filtration F of a differential graded Z-module A determines a
spectral sequence (Er, dr) together with natural isomorphism

E1
p,q ≅Hp+q(FpA/Fp−1A)

and
E∞
p,q ≅ Fp(Hp+qA)/Fp−1Hp+qA

The filtration F of a DG-module A is canonically bounded if F−1A = 0 and FnAn,=
An, in each degree n.

Theorem 16. If F is a canonically bounded filtration of a positively graded DG-
module A , the spectral sequence of F lies in the first quadrant and the induced filtra-
tion of HA is finite, of the form

0 = Fn−1HnA ⊆ F0HnA ⊆ ⋯ ⊆ FnHnA =HnA

with successive quotients
FpHn/Fp−1Hn ≅ E∞

p,n−p
under isomorphisms induced by 1A. For example, the LERAY-SERRE theorem arises
]tom a canonically bounded filtration of the singular chains o] a fiber space.

Many useful filtrations arise from bicomplexes. A bicomplex K is a family Kp,q of
modules with two families

∂′Kp,q →Kp−1,q

∂′′Kp,q →Kp,q−1

of module homomorphism, defined for all integers p, q and such that

∂′2 = ∂′′2 = 0

and
∂′∂′′ + ∂′′∂′ = 0

A bicomplex is positive if it lies in the first quadrant.

Each bicomplex K determines a single complexv X = Tot(K) as

Xn = ∑
p,q=n

Kp,q

with differential ∂ = ∂′ + ∂′′ ∶Xn →Xn−1 It is easy to check that ∂2 = 0.

We have a filtration, called the first Filtration F ′ of X defined by the subcomplexes
F ′
p with

(F ′
pX)n = ∑

k≤p
Kk,n−k

The associated spectral sequence of F is called the first spectral sequence E′ of the
bicomplex.
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Theorem 17. For the first spectral sequence E′ of a bicomplex K with associated
total complex X there are natural isomorphism

E′
p,q2 ≅H ′

pH
′′q(K)

If K is positive, E lies in the first quadrant and E′ ⇒H(X).

We are in conditions to state and prove the main theorem for computing group coho-
mology

Theorem 18 (The Lyndon-Serre-Hoschild Spectral Sequence). Let N be a normal
subgroup of G, and A be a ZG-module. There is a first quadrant spectral sequence
(E,d) natural in A, associated to the extension

1→ N → G→ G/N

with natural isomorphism

Ep,q2 ≅Hp(G/N,Hq(N,A)⇒Hp+q(G,A)

3 Computations on Group Cohomology

In this section we apply the Leray-Serre spectral sequence, and the Lindon-Serre-
Hoschild spectral sequence to compute the group cohomology of some groups.

Let G = Z/pZ and k = Fp. Assume that there is a finite length kG-resolution C∗ of
k where each Cn is a finitely generated permutation module. More precisely, since G
has two subgroups, G and {1}, there exists finite sets In and Jn depending on n such
that

Cn = ⊕Ink[G/G]⊕⊕Jnk[G/1].
We consider the subcomplex D∗ such that Dn = ⊕Ink[G/G] ≅ ⊕Ink. Now, let i ∶D∗ →
C∗ be the inclusion of subcomplex. Let P → Z be a ZG-module projective resolution.
We defined H∗(G,C) ∶=H∗(Tor(P ⊗

ZG
C)) and H∗(G,D) ∶=H∗(Tor(P ⊗

ZG
D)). Since

G acts trivially on D∗, Künneth formula gives for every couple (p, q)

Hn(G,D) ≅ (⊕p+q=nHp(G,k)⊗HqD)⊕ (⊕p+q=n−1Tor1(Hp(G,k),HqD)).
Now k is a field so Tor1(Hp(G,k),HqD) = 0 for all p, q andHn(G,D) ≅ ⊕p+q=nHp(G,k)⊗k
Hq(D). Hp(G,k) ≅ k, thus Hn(G,D) ≅ ⊕nq=1Hq(D).
Furthermore, we have a converging spectral sequence E2

p,q =Hp(G,HqC)⇒Hp+q(G,C).
But C is assumed to be of finite length so does the chain complex C/D and each
term is a free kG-module so they are all H∗-acyclic. By proposition 5.6 page 170
of Brown’s Cohomology of Groups, we have a converging spectral sequence E2

p,q =
Hp(G,Hq(C/D))⇒Hp+q((C/D)G) ≅Hp+q(G,C/D).
But we have the following short exact sequence 0 → D → C → C/D → 0 which
induces a long exact sequence in cohomology. But for i >> 0 large enough we have
Hi((C/D)G) = 0 and so Hj(G,C) ≅Hj(G,D) for all j ≥ i. So k = ⊕j≤iHj(G,D).
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Consider the following presentation of the quaternion group Q8 ∶= {σ, τ ∣σ4 = 1, σ2 =
τ2, τστ−1 = σ−1}. We know that the subgroups of Q8 are

Q8

< σ > < στ > < τ >

< σ2 >

{1}

and that each of them is normal. More precisely, Q8 is a group of order 8, each of
the subgroups < σ >,< στ > and < τ > are cyclic maximal subgroups all isomorphic
to the cyclic group Z/4Z, < σ2 > is the center of Q8 and is isomorphic to the cyclic
group Z/2Z and {1} is the trivial subgroup. Therefore, the derived subgroup is
[Q8,Q8] = Z/2Z and the abelianization of Q8, Q8/[Q8,Q8], is the Klein group <
[σ], [τ] >= Z/2Z ×Z/2Z. We therefore have the following central group extension

1→ Z/2Z→ Q8 → Z/2Z ×Z/2Z→ 1.

We know that

H1(Q8,Z/2Z) ≅HomGroups(Q8,Z/2Z) ≅HomAb(Q8/[Q8,Q8],Z/2Z) = Z/2Z ×Z/2Z.

That is, H1(Q8,Z/2Z) is the dual space to the F2-vector space Q8/[Q8,Q8] of basis
{[σ], [τ]}. Hence, the dual basis made of the two following maps x, y ∶ Q8/[Q8,Q8]→
Z/2Z characterized by

x([σ]) = 1, x([τ]) = 0, y([σ]) = 0 and y([τ]) = 1.

From the third assignment we know that H∗(Z/2Z,Z/2Z) = F2[w] with ∣w∣ = 1 and as
seen in class, using Künneth formula, we find H∗(Z/2Z×Z/2Z,Z/2Z) = F2[x, y] with
∣x∣ = ∣y∣ = 1. Now, the quotient group Z/2Z × Z/2Z = Q8/[Q8,Q8] acts trivially on
H∗([Q8,Q8],Z/2Z) since [Q8,Q8] = Z/2Z is the center of Q8. Therefore, the E2-page
of the Lyndon-Hochschild-Serre spectral sequence of the central extension

1→ Z/2Z→ Q8 → Z/2Z ×Z/2Z→ 1

is

E2
∗,∗ =H∗(Q8/[Q8,Q8],H∗([Q8,Q8],Z/2Z)) ≅H∗(Q8/[Q8,Q8],Z/2Z)⊗H∗([Q8,Q8],Z2) ≅ F2[x, y,w]
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where we used the universal coefficient theorem to get the first isomorphism. We
want to compute the image of d2 ∶ E0,1

2 → E2,0
2 . On one hand, H1(Q8,Z/2Z) =

Z/2Z × Z/2Z = E1,0
2 = E1,0

∞ so d2(w) ≠ 0. On the other hand, E2,0
2 = H2(Z/2Z ×

Z/2Z,H0(Z/2Z,Z/2Z)) = H2(Z/2Z × Z/2Z,Z/2Z) is generated by degree 2 homoge-
neous polynomials in the variables x and y. Thus, there exists a, b, c ∈ F2 such that
d2(w) = ax2 + bxy + cy2.
To find the coefficients, we use the restriction map on the subgroups of Q8. We first
consider the following map of group extensions

1 Z/2Z Q8 < [σ], [τ] > 1

1 < σ2 > < σ > < [σ] > 1

≅

We define the restriction map resσ ∶= res<[σ],[τ]>.<[σ]> ∶ H1(< [σ], [τ] >,Z/2Z) →
H1(< [σ] >,Z/2Z) by x↦ resσ(x) a generator of H1(< [σ] >,Z/2Z) and y ↦ 0.
We now look at the Lyndon-Hochschild-Serre spectral sequence associated to the
group extension

1→< σ2 >→< σ >→< [σ] >→ 1

(where we recall that < σ2 >= Z/2Z,< σ >= Z/4Z and < [σ] >= Z/2Z). As before, the
group < [σ] > acts trivially on H∗(< σ >,Z/2Z) so by the universal coefficient theorem
the σE2-page is H∗(< σ2 >,Z/2Z) ⊗H∗(< [σ] >,Z/2Z) = H∗(Z/2Z × Z/2Z,Z/2Z) =
F2[x1, x2] with ∣x1∣ = ∣x2∣ = 1. Since H1(< σ >,Z/2Z) = Hom(Z/4Z,Z/2Z) = Z/2Z
the differential σd2 ∶σ E0,1

2 →σ E2,0
2 is nonzero because otherwise we would have

H1(Z/4,Z/2Z) = Z/2Z ×Z/2Z which can’t be because σE2 =H∗(Z/2Z ×Z/2Z,Z/2Z)
converges to H∗(Z/4Z,Z/2Z). Now, using the naturality of spectral sequences we get
the following commutative diagram

E0,1
2 E2,0

2

σE0,1
2

σE2,0
2 .

d2

≅
σd2

resσ

Hence by commutativity, 0 ≠ resσ(d2(w)) = resσ(ax2 + bxy + cy2) = aresσ(x)2. But
resσ(x) generates H1(< [σ] >,Z/2Z) so a = 1.
We now consider the following map of group extensions

1 Z/2Z Q8 < [σ], [τ] > 1

1 < σ2 > < τ > < [τ] > 1

≅

By definition, < [τ] >=< [σ] >
We define the restriction map resτ ∶= res<[σ],[τ]>.<[τ]> ∶H1(< [σ], [τ] >,Z/2Z)→H1(<
[τ] >,Z/2Z) by x↦ 0 and y ↦ resτ(y) a generator of H1(< [τ] >,Z/2Z).
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We now look at the Lyndon-Hochschild-Serre spectral sequence associated to the
group extension

1→< σ2 >→< τ >→< [τ] >→ 1

As before, the group < [τ] > acts trivially on H∗(< τ >,Z/2Z) so by the univer-
sal coefficient theorem the τE2-page is H∗(< σ2 >,Z/2Z) ⊗ H∗(< [τ] >,Z/2Z) =
H∗(Z/2Z × Z/2Z,Z/2Z) = F2[x3, x4] with ∣x3∣ = ∣x3∣ = 1. Since H1(< τ >,Z/2Z) =
Hom(Z/4Z,Z/2Z) = Z/2Z the differential τd2 ∶τ E0,1

2 →τ E2,0
2 is nonzero for the same

reason as before. Now, using the naturality of spectral sequences we get the following
commutative diagram

E0,1
2 E2,0

2

τE0,1
2

τE2,0
2 .

d2

≅
τd2

resτ

Hence by commutativity, 0 ≠ resτ(d2(w)) = resτ(ax2 + bxy + cy2) = cresτ(y)2. But
resτ(y) generates H1(< [τ] >,Z/2Z) so c = 1.
We finally consider the following map of group extensions

1 Z/2Z Q8 < [σ], [τ] > 1

1 < σ2 > < στ > < [στ] > 1

≅

By definition, < [στ] >=< [σ] >
We define the restriction map resστ ∶= res<[σ],[τ]>.<[στ]> ∶ H1(< [σ], [τ] >,Z/2Z) →
H1(< [στ] >,Z/2Z) by x2 ↦ 0, y2 ↦ 0 and xy ↦ resστ(xy) a generator of H1(< [στ] >
,Z/2Z).
We now look at the Lyndon-Hochschild-Serre spectral sequence associated to the
group extension

1→< σ2 >→< στ >→< [στ] >→ 1

As before, the group < [στ] > acts trivially on H∗(< τ >,Z/2Z) so by the univer-
sal coefficient theorem the στE2-page is H∗(< σ2 >,Z/2Z) ⊗ H∗(< [στ] >,Z/2Z) =
H∗(Z/2Z × Z/2Z,Z/2Z) = F2[x5, x6] with ∣x5∣ = ∣x6∣ = 1. Since H1(< στ >,Z/2Z) =
Hom(Z/4Z,Z/2Z) = Z/2Z the differential στd2 ∶στ E

0,1
2 →στ E2,0

2 is nonzero for the
same reason as before. Now, using the naturality of spectral sequences we get the
following commutative diagram

E0,1
2 E2,0

2

στE0,1
2

στE2,0
2 .

d2

≅
στd2

resστ
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Hence by commutativity, 0 ≠ resστ(d2(w)) = resστ(ax2 + bxy + cy2) = bresστ(xy).
But resστ(xy) generates H1(< [στ >,Z/2Z) so b = 1.
This shows that d2(w) = x2 + xy + y2.

Now we compute the cohomology of the semi-direct product group G = (S1)r ⋊ Z/2
with mod 2 coefficients for r ≥ 1. Here H∗(⋅) denotes H∗(⋅,Z/2)

Let T denote (S1)r. Recall that H∗(BT ) ≅ Z/2[c1, . . . , cr], ∣ci∣ = 2 for all i = 1, . . . , r
and H∗(BZ/2) ≅ Z/2[w], ∣w∣ = 1 (See [?, Th 14.5].) To compute the cohomology of
G, the short exact sequence

1→ T → G→ Z/2→ 1

yields in a fibration of classifying spaces

BT → BG→ BZ/2

where the E2 page of the associated Leray-Serre Spectral sequence is given by

Ep,q2 ≅Hp(BZ/2;Hq(BT ))⇒H∗(BG)
since Z/2 acts on Hq(BT ) trivially. (In general the action of Z/2 = {±1} over
Hq(BT ;Z) is given by the induced action on the generators ±1 ⋅ ci = ±ci).

Therefore, by the universal coefficient theorem we have a Z/2-algebras isomorphism

E2 ≅H∗(BZ/2)⊗H∗(BT ) ≅ Z/2[w, c1, . . . , cr],

and thus, the differential d2 depends only on the values on the generators w and ci be-
cause it is a derivation. Namely, d2(w) = 0 since w lies on the x-axis of the spectral se-
quence and d2(ci) = 0 for all i = 1, . . . , r since d2(ci) ∈ E2,1

2 =H2(BZ/2)⊗H1(BT ) = 0.

It follows that d2 = 0, implying that E3 ≅ E2. Now we consider the differential d3;
as before, we only need to compute the map d3 ∶ E0,2

3 → E3,0
3 . In this case, we have

d3(ci) = αiw3 with either αi = 0 or αi = 1.

The sub-extension

T T ⋊Z/2 Z/2

1 1 ⋊Z/2 Z/2

- -

-

6

-

6 6

induces a map of spectral sequences Ep,qs → Ẽp,qs , where Ẽ2 ≅H∗(BZ/2) is the Ẽ2 page
of the spectral sequence associated to the bottom exact sequence. By the naturarlity
of the spectral sequences we have then a commutative diagram
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E0,2
3 E3,0

3

Ẽ0,2
3 Ẽ3

3,0

-d3

? ?
-d̃3

which implies that d3 = 0 since the right vertical arrow is the identity map and d̃3 = 0.

Notice that for r ≥ 4 Er,3−rr = 0 an so is the differential dr ∶ E0,2
r → Er,3−rr . Therefore,

the spectral sequence degenerates at page 2 and this implies that

E2 ≅ E∞ ≅H∗(BZ/2)⊗H∗(BT ) ≅ Z/2[w, c1, . . . , cr] ≅H∗(BG)

Recall that the above isomorphism is a graded Z/2[w]-module isomorphism; how-
ever since H∗(BT ) is a polynomial algebra, we can choose a multiplicative section
ϕ ∶ H∗(BT ) → H∗(BG) of the surjective map H∗(BG) → H∗(BT ). It follows
from the Leray-Hirsch Theorem that such map together with the canonical map
p∗ ∶H∗(BZ/2)→H∗(BG) give rise to an isomorphism of graded H∗(BZ/2)-modules

θ ∶H∗(BZ/2)⊗H∗(BT )→H∗(BG)

given by θ(α ⊗ β) = ϕ(a)p∗(β). Moreover, the map θ is an isomorphism of graded
Z/2-algebras since both ϕ and p∗ are multiplicative maps.

Furthermore, the restriction maps H∗(BG) → H∗(BZ/2) and H∗(BG) → H∗(BT )
induced by the inclusions, coincide with the projection of H∗(BZ/2) ⊗H∗(BT ) on
each factor respectively via the isomorphism θ.

Summarizing, we have

Proposition 19. There is a graded Z/2-algebra isomorphism H∗(BG) ≅ Z/2[w, c1, . . . , cr]
such that the canonical maps H∗(BG) → H∗(BT ), H∗(BG) → H∗(BZ/2) and
H∗(BZ/2)→H∗(BG) coincide with the canonical restriction maps Z/2[w, c1, . . . , cn]→
Z/2[c1, . . . , cn], Z/2[w, c1, . . . , cn]→ Z/2[w], and the canonical inclusion map Z/2[w]→
Z/2[w, c1, . . . , cn] respectively.
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