Equivariant Cohomology for a torus action with a compatible involution.

Sergio Chaves

University of Western Ontario

GSCAGT Temple University Philadelphia, June 2018

 Ω

すロト (御) すきとすきと

目

Let $\mathcal{T}=(S^1)^n$ be a torus acting on a compact symplectic manifold (M, ω) in a Hamiltonian way. Let

$$
M^{\mathsf{T}} = \{x \in M : g \cdot x = x, \ \forall g \in \mathsf{T}\}
$$

denote the fixed point subspace.

Let $\mathcal{T}=(S^1)^n$ be a torus acting on a compact symplectic manifold (M, ω) in a Hamiltonian way. Let

$$
M^{\mathsf{T}} = \{x \in M : g \cdot x = x, \ \forall g \in \mathsf{T}\}
$$

denote the fixed point subspace. Then

Theorem (T. Frankel. 1959)

$$
H^*(M;k) \cong \bigoplus_{i=1}^m H^{*-d_i}(F_i;k),
$$

where F_1,\ldots,F_m are the connected components of M^T , d_i is the Morse-Bott index associated to F_i and char(k) = 0.

 \bullet For a topological space X with an action of a compact topological group G , how are X and X^G algebraically related?

 QQ

- For a topological space X with an action of a compact topological group G , how are X and X^G algebraically related?
- \bullet Is there an algebraic invariant of X that captures both the topology and the nature of the action?

- For a topological space X with an action of a compact topological group G , how are X and X^G algebraically related?
- Is there an algebraic invariant of X that captures both the topology and the nature of the action?
- The singular cohomology $H^*(X)$ depends just on the topology of X .

- For a topological space X with an action of a compact topological group G , how are X and X^G algebraically related?
- \bullet Is there an algebraic invariant of X that captures both the topology and the nature of the action?
- The singular cohomology $H^*(X)$ depends just on the topology of X .

How about the cohomology of the orbit space $H^*(X/G)$?

- For a topological space X with an action of a compact topological group G , how are X and X^G algebraically related?
- Is there an algebraic invariant of X that captures both the topology and the nature of the action?
- The singular cohomology $H^*(X)$ depends just on the topology of X .

How about the cohomology of the orbit space $H^*(X/G)$?

Example

Let $X=S^2$ and $G=\mathbb{Z}/2$ be the antipodal action on $X.$ Then $H^*(X/G) \cong H^*(\mathbb{R}P^2).$

Sergio Chaves [Equivariant Cohomology](#page-0-0)

メロメメ 御き メミメメ ミメー

重

Let $X = S^2$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

目

メロトメ 御 トメ 君 トメ 君 トー

目

Let $X = S^2$.

メロトメ 御 トメ 君 トメ 君 トー

目

Let $X = S^2$.

メロトメ 御 トメ 君 トメ 君 トー

目

Let $X = S^2$.

Here, $H^*(X/G) \cong H^*(\{pt\}).$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

目

 \leftarrow

∍

 \mathbb{R} ×. D. к -b

Ε

准

The free action of $G=S^1$ on S^{2n+1} induces a free action on S^∞ , where S^∞ is the colimit of the complex spheres $S^1\subset S^3\subset\cdots$.

The free action of $G=S^1$ on S^{2n+1} induces a free action on S^∞ , where S^∞ is the colimit of the complex spheres $S^1\subset S^3\subset\cdots$.

It is not hard to prove that $S^{\infty} \simeq \{pt\}$.

 Ω

The free action of $G=S^1$ on S^{2n+1} induces a free action on S^∞ , where S^∞ is the colimit of the complex spheres $S^1\subset S^3\subset\cdots$.

It is not hard to prove that $S^{\infty} \simeq \{pt\}$.

Consider $\tilde{S}^2 = S^{\infty} \times S^2$ with the diagonal action of G.

The free action of $G=S^1$ on S^{2n+1} induces a free action on S^∞ , where S^∞ is the colimit of the complex spheres $S^1\subset S^3\subset\cdots$.

It is not hard to prove that $S^{\infty} \simeq \{pt\}.$

Consider $\tilde{S^2}=S^{\infty}\times S^2$ with the diagonal action of G . Then $\tilde{S}^2 \simeq S^2$.

G acts freely on \tilde{S}^2 .

The free action of $G=S^1$ on S^{2n+1} induces a free action on S^∞ , where S^∞ is the colimit of the complex spheres $S^1\subset S^3\subset\cdots$.

It is not hard to prove that $S^{\infty} \simeq \{pt\}.$

Consider $\tilde{S^2}=S^{\infty}\times S^2$ with the diagonal action of G . Then $\tilde{S}^2 \simeq S^2$.

G acts freely on \tilde{S}^2 .

Now we can study the cohomology ring $H^*(\tilde{S^2}/S^1).$

The free action of $G=S^1$ on S^{2n+1} induces a free action on S^∞ , where S^∞ is the colimit of the complex spheres $S^1\subset S^3\subset\cdots$.

It is not hard to prove that $S^{\infty} \simeq \{pt\}.$

Consider $\tilde{S^2}=S^{\infty}\times S^2$ with the diagonal action of G . Then $\tilde{S}^2 \simeq S^2$. G acts freely on \tilde{S}^2 .

Now we can study the cohomology ring $H^*(\tilde{S^2}/S^1).$

Later we will see that $H^*(\tilde{S}^2/S^1)$ is non-trivial.

In general, for a G-space X, we want to replace it by a G-space \hat{X} where G acts freely and $X \simeq \tilde{X}$.

 Ω

In general, for a G-space X, we want to replace it by a G-space X where G acts freely and $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely.

 Ω

In general, for a G-space X, we want to replace it by a G-space X where G acts freely and $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely.

Theorem (J. Milnor. 1956)

For any topological group G, there exist a unique (up to homotopy) contractible space EG with a free action of G.

In general, for a G-space X, we want to replace it by a G-space X where G acts freely and $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely.

Theorem (J. Milnor. 1956)

For any topological group G, there exist a unique (up to homotopy) contractible space EG with a free action of G.

The orbit space $BG := EG/G$ is called the classifying space of G.

In general, for a G-space X, we want to replace it by a G-space X where G acts freely and $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely.

Theorem (J. Milnor. 1956)

For any topological group G, there exist a unique (up to homotopy) contractible space EG with a free action of G.

The orbit space $BG := EG/G$ is called the classifying space of G.

Example

•
$$
G = S^1
$$
, $EG = S^{\infty}$, $BG = \mathbb{C}P^{\infty}$.

•
$$
G = \mathbb{Z}/2
$$
, $EG = S^{\infty}$, $BG = \mathbb{R}P^{\infty}$.

$$
\bullet \ \ G=\mathbb{Z}, \ EG=\mathbb{R}, \ BG=S^1.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

E

 QQ

Equivariant Cohomology

 \leftarrow

 \rightarrow

э

 \blacktriangleright \blacktriangleleft D. к -b

Ε

目

Equivariant Cohomology

Definition (Seminar on transformation groups - A. Borel. 1960.) For a G-space X, the Borel construction of X is the space $X_G = (EG \times X)/G$ and the G-equivariant cohomology of X is defined as

 $H^*_G(X) := H^*(X_G).$

Equivariant Cohomology

Definition (Seminar on transformation groups - A. Borel. 1960.)

For a G-space X, the Borel construction of X is the space $X_G = (EG \times X)/G$ and the G-equivariant cohomology of X is defined as

 $H^*_G(X) := H^*(X_G).$

For any G-spaces X, Y and a G-equivariant map $f: X \to Y$ (i.e. $f(g \cdot x) = g \cdot f(x)$, there is an induced map

$$
f_G^*: H^*_G(Y) \to H^*_G(X).
$$

何 ▶ ヨ ヨ ▶ ヨ ヨ ▶

 \leftarrow

Ξ

∍

э

If G acts on X trivially (i.e. $X^G=X)$ we have

 $X_G \cong BG \times X$ and $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$.

医间周的

If G acts on X trivially (i.e. $X^G=X)$ we have

 $X_G \cong BG \times X$ and $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$.

Then for any G-space X, $H_G^*(X^G) \cong H^*(BG) \otimes H^*(X^G)$.

 Ω

If G acts on X trivially (i.e. $X^G=X)$ we have

 $X_G \cong BG \times X$ and $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$. Then for any G-space X, $H_G^*(X^G) \cong H^*(BG) \otimes H^*(X^G)$.

 \bullet If G acts on X freely, we have

$$
X_G \simeq X/G \text{ and } H^*_G(X) \cong H^*(X/G).
$$

[Motivation](#page-1-0) [The Borel construction](#page-15-0) [Equivariant formality](#page-39-0) [2-Torus actions](#page-55-0) [Compatible involutions](#page-62-0)

A module structure on H_G^{\ast} $\frac{d^*_{\mathcal{G}}(X)}{d^*_{\mathcal{G}}(X)}$

 \leftarrow

내 지금 \mathbf{p} . Ε

 \prec -b 299

目

[Motivation](#page-1-0) [The Borel construction](#page-15-0) [Equivariant formality](#page-39-0) [2-Torus actions](#page-55-0) [Compatible involutions](#page-62-0)

A module structure on H_G^{\ast} $\frac{d^*_{\mathcal{G}}(X)}{d^*_{\mathcal{G}}(X)}$

The constant map $X \rightarrow \{pt\}$ is G-equivariant and gives rise to a map

$$
p: H^*_G(\{pt\}) \to H^*_G(X).
$$

 299

∍

御き メミチメ
A module structure on H_G^{\ast} $\frac{d^*_{\mathcal{G}}(X)}{d^*_{\mathcal{G}}(X)}$

The constant map $X \rightarrow \{pt\}$ is G-equivariant and gives rise to a map

$$
p: H^*_G(\{pt\}) \to H^*_G(X).
$$

Since $\{pt\}_G \cong BG$, p induces a $H^*(BG)$ -module structure on $H^*_G(X)$.

AP ▶ ◀ ヨ ▶ ◀ ヨ ▶

A module structure on H_G^{\ast} $\frac{d^*_{\mathcal{G}}(X)}{d^*_{\mathcal{G}}(X)}$

The constant map $X \rightarrow \{pt\}$ is G-equivariant and gives rise to a map

$$
p: H^*_G(\{pt\}) \to H^*_G(X).
$$

Since $\{pt\}_G \cong BG$, p induces a $H^*(BG)$ -module structure on $H^*_G(X)$.

Definition (Equivariant formality)

A G-space X is said to be G-equivariantly formal if

$$
H^*_G(X) \cong H^*(BG) \otimes H^*(X)
$$

as $H^*(BG)$ -modules.

御 ▶ す 君 ▶ す 君 ▶

A module structure on H_G^{\ast} $\frac{d^*_{\mathcal{G}}(X)}{d^*_{\mathcal{G}}(X)}$

The constant map $X \rightarrow \{pt\}$ is G-equivariant and gives rise to a map

$$
p: H^*_G(\{pt\}) \to H^*_G(X).
$$

Since $\{pt\}_G \cong BG$, p induces a $H^*(BG)$ -module structure on $H^*_G(X)$.

Definition (Equivariant formality)

A G-space X is said to be G-equivariantly formal if

$$
H^*_G(X) \cong H^*(BG) \otimes H^*(X)
$$

as $H^*(BG)$ -modules.

In particular, X^G is G-equivariantly formal.

御 ▶ イヨ ▶ イヨ ▶

When is X G-equivariantly formal?

 \leftarrow

э

Britannia II 299

э

When is X G-equivariantly formal?

For $z \in EG$, the section $i_z : X \to X_G$ given by $i_z(x) = [z, x]$ induces a map

 $r: H^*_G(X) \to H^*(X).$

 \rightarrow \rightarrow \rightarrow

When is X G-equivariantly formal?

For $z \in EG$, the section $i_z : X \to X_G$ given by $i_z(x) = [z, x]$ induces a map

$$
r: H^*_G(X) \to H^*(X).
$$

Proposition

Let X be a G-space. The following are equivalent:

When is X G-equivariantly formal?

For $z \in EG$, the section $i_z : X \to X_G$ given by $i_z(x) = [z, x]$ induces a map

$$
r: H^*_G(X) \to H^*(X).
$$

Proposition

Let X be a G-space. The following are equivalent:

- \bullet X is G-equivariantly formal.
- The map $r: H^*_G(X) \to H^*(X)$ is surjective.
- $H^*_G(X)$ is a free $H^*(BG)$ -module (if G is connected).

 \leftarrow \Box \rightarrow

э \mathbf{p} Ε $\,$

к

 \sim

E

Now assume that G is a compact Lie group and let $T \subseteq G$ be the maximal torus on G.

Now assume that G is a compact Lie group and let $T \subseteq G$ be the maximal torus on G. Then

Theorem

 X is G-equivariantly formal if and only if X is T-equivariantly formal.

Now assume that G is a compact Lie group and let $\mathcal{T} \subseteq G$ be the maximal torus on G. Then

Theorem

X is G-equivariantly formal if and only if X is T -equivariantly formal.

So we can restrict the study of equivariant formality of compact Lie group actions to torus actions.

つくへ

The Betti number criterion

 \leftarrow \Box \rightarrow

 \triangleright \rightarrow \equiv

 \rightarrow

э

-b

准

The Betti number criterion

For a topological space X , denote its Betti number by

$$
b(X)=\sum_{i\geq 0}\dim_kH^i(X).
$$

 299

4 重

The Betti number criterion

For a topological space X , denote its Betti number by

$$
b(X)=\sum_{i\geq 0}\dim_kH^i(X).
$$

Theorem (Borel. 1960)

Let T be a torus and X a T -space. X is T -equivariantly formal if and only if $b(X) = b(X^G)$.

The Betti number criterion

For a topological space X , denote its Betti number by

$$
b(X)=\sum_{i\geq 0}\dim_kH^i(X).
$$

Theorem (Borel. 1960)

Let T be a torus and X a T -space. X is T -equivariantly formal if and only if $b(X) = b(X^G)$.

Example

Under this theorem, S^2 with the rotation action of S^1 is $S¹$ -equivariantly formal.

 $\langle \overline{A} \rangle$ \rightarrow $\langle \overline{A} \rangle$ \rightarrow $\langle \overline{A} \rangle$

E

 QQ

The Betti number criterion

For a topological space X , denote its Betti number by

$$
b(X)=\sum_{i\geq 0}\dim_kH^i(X).
$$

Theorem (Borel. 1960)

Let T be a torus and X a T -space. X is T -equivariantly formal if and only if $b(X) = b(X^G)$.

Example

Under this theorem, S^2 with the rotation action of S^1 is S^1 -equivariantly formal. That is,

$$
H^*_{S^1}(S^2)\cong H^*(BS^1)\otimes H^*(S^2).
$$

 $\langle \overline{A} \rangle$ \rightarrow $\langle \overline{A} \rangle$ \rightarrow $\langle \overline{A} \rangle$

E

 QQ

Equivariant formality on Symplectic manifolds

 299

∍

Equivariant formality on Symplectic manifolds

The Frankel-Atiyah's theorem

$$
H^*(M;k) \cong \bigoplus_{i=1}^m H^{*-d_i}(F_i;k), \ \left(\bigcup_{i=1}^m F_i = M^T\right)
$$

implies that $b(M) = b(M^T)$.

Equivariant formality on Symplectic manifolds

The Frankel-Atiyah's theorem

$$
H^*(M;k) \cong \bigoplus_{i=1}^m H^{*-d_i}(F_i;k), \ \left(\bigcup_{i=1}^m F_i = M^T\right)
$$

implies that $b(M) = b(M^T)$. So we get

Theorem

For a Hamiltonian action of a torus T on a symplectic manifold M, M is T-equivariantly formal and

$$
H^*_{\mathcal{T}}(M) \cong H^*(BT) \otimes H^*(M) \cong \bigoplus_{i=1}^m H^{*-d_i}_{\mathcal{T}}(F_i).
$$

つくへ

Equivariant formality for 2-torus actions

 299

∍

Equivariant formality for 2-torus actions

A 2-torus is a group $T_2 \cong (\mathbb{Z}/2)^n$ for some $n \geq 1$.

Equivariant formality for 2-torus actions

A 2-torus is a group $T_2 \cong (\mathbb{Z}/2)^n$ for some $n \geq 1$.

Now assume char(k) = 2. Similar to the case of torus actions we have

Theorem

Let X be a T₂-space. X is T₂-equivariantly formal if and only if

 $b(X) = b(X^{T_2}).$

Equivariant formality for 2-torus actions

A 2-torus is a group $T_2 \cong (\mathbb{Z}/2)^n$ for some $n \geq 1$.

Now assume char(k) = 2. Similar to the case of torus actions we have

Theorem

Let X be a T₂-space. X is T₂-equivariantly formal if and only if

 $b(X) = b(X^{T_2}).$

An action of $\mathbb{Z}/2$ on a topological space X is equivalent to an involution $\tau : X \to X$.

4日)

э \mathbf{p} Ε $\,$

к

×.

E

Let $\mathcal{T}=(S^1)^n$ be a torus and consider the 2-torus subgroup of $T_2 = \{ g \in T : g^2 = e \} \cong (\mathbb{Z}/2)^n$.

Theorem (M. Franz - S.)

For X a T-space, X is T-equivariantly formal if and only if X is T_2 -equivariantly formal.

Let $\mathcal{T}=(S^1)^n$ be a torus and consider the 2-torus subgroup of $T_2 = \{ g \in T : g^2 = e \} \cong (\mathbb{Z}/2)^n$.

Theorem (M. Franz - S.)

For X a T-space, X is T-equivariantly formal if and only if X is T_2 -equivariantly formal.

Equivariant formality on char(k) = 2 reduces to study involutions.

つくい

Mixing torus action and involutions

€⊡

→ 手

 \rightarrow

∍

э

Mixing torus action and involutions

Let T be a torus, X be a T-space and $\tau : X \to X$ an involution. We say that τ is compatible with the action of T if for any $g \in G$. $x \in X$.

$$
\tau(g\cdot x)=g^{-1}\cdot \tau(x).
$$

 Ω

Mixing torus action and involutions

Let T be a torus, X be a T-space and $\tau : X \to X$ an involution. We say that τ is compatible with the action of T if for any $g \in G$. $x \in X$

$$
\tau(g\cdot x)=g^{-1}\cdot \tau(x).
$$

Definition

Mixing torus action and involutions

Let T be a torus, X be a T-space and $\tau : X \to X$ an involution. We say that τ is compatible with the action of T if for any $g \in G$. $x \in X$

$$
\tau(g\cdot x)=g^{-1}\cdot \tau(x).
$$

Definition

The fixed point subspace X^{τ} is called the real locus of X. X^{τ} inherits a natural action of the 2-torus $T_2 \subset T$.

Anti-symplectic involutions

Let (M, ω) be a symplectic manifold with a Hamiltonian action of a torus T. An anti-symplectic involution $\tau : M \to M$ is a smooth involution such that $\tau^*\omega = -\omega$.

おく 国家

 Ω

Anti-symplectic involutions

Let (M, ω) be a symplectic manifold with a Hamiltonian action of a torus T. An anti-symplectic involution $\tau : M \to M$ is a smooth involution such that $\tau^*\omega = -\omega$.

Theorem (H. Duistermaat. 1983)

Let M be a symplectic manifold with a Hamiltonian action of a torus T and a compatible anti-symplectic involution τ . Then

$$
H^*(M^\tau) \cong \bigoplus_{i=1}^m H^{*-\frac{d_i}{2}}(F_i^\tau)
$$

and
$$
b(M^{\tau}) = b(M^{\tau} \cap M^{\tau})
$$
, where $M^{\tau} = \bigcup_{i=1}^{m} F_i$.

つくい

Equivariant formality of the real locus

 299

∍

∍

Equivariant formality of the real locus

Duistermaat's isomorphism holds at the level of T_2 -equivariant cohomology.

 Ω

Equivariant formality of the real locus

Duistermaat's isomorphism holds at the level of T_2 -equivariant cohomology. Namely,

Theorem (D. Biss - V. Guillemin - T. Holm - 2004)

\n
$$
H_{T_2}^*(M^{\tau}) \cong \bigoplus_{i=1}^m H_{T_2}^{*-\frac{d_i}{2}}(F_i^{\tau}).
$$

\n
$$
\bullet \ b(M^{\tau}) = b(M^{\tau} \cap M^{T_2}) = b((M^{\tau})^{T_2}) \text{ and thus}
$$

\n
$$
H_{T_2}^*(M^{\tau}) \cong H^*(BT_2) \otimes H^*(M^{\tau}).
$$

Symplectic case: Moral of the story

 \leftarrow

∍

×. \rightarrow ∍

э
Symplectic case: Moral of the story

Let M be a symplectic manifold with an action of a torus T and a compatible involution τ . T acts in a Hamiltonian way on M if and only if M is T-equivariantly formal.

Symplectic case: Moral of the story

Let M be a symplectic manifold with an action of a torus T and a compatible involution τ . T acts in a Hamiltonian way on M if and only if M is T -equivariantly formal. So we have that

Theorem

If M is T-equivariantly formal then the real locus M^{τ} is T_2 -equivariantly formal.

つくい

Symplectic case: Moral of the story

Let M be a symplectic manifold with an action of a torus T and a compatible involution τ . T acts in a Hamiltonian way on M if and only if M is T -equivariantly formal. So we have that

Theorem

If M is T-equivariantly formal then the real locus M^{τ} is T_2 -equivariantly formal.

Does this situation hold in a more general setting?

つくい

The topological case

For just topological spaces, the answer is no!.

Example

Let
$$
X = S^3 \subseteq \mathbb{C}^2
$$
, let $T = S^1$ act on X by $g \cdot (u, z) = (gu, z)$ and
let τ be the involution $\tau(u, z) = (\bar{u}, -z)$.

つくへ

∍

The topological case

For just topological spaces, the answer is no!.

Example

Let
$$
X = S^3 \subseteq \mathbb{C}^2
$$
, let $T = S^1$ act on X by $g \cdot (u, z) = (gu, z)$ and
let τ be the involution $\tau(u, z) = (\bar{u}, -z)$. So

$$
b(X) = b(X^T) = b(X^T) = 2
$$
 and $b((X^T)^{T_2}) = 0$.

 \leftarrow

 $2Q$

∍

The topological case

For just topological spaces, the answer is no!.

Example

Let
$$
X = S^3 \subseteq \mathbb{C}^2
$$
, let $T = S^1$ act on X by $g \cdot (u, z) = (gu, z)$ and
let τ be the involution $\tau(u, z) = (\bar{u}, -z)$. So

$$
b(X) = b(X^T) = b(X^T) = 2
$$
 and $b((X^T)^{T_2}) = 0$.

Therefore, X is T-equivariantly formal but its real locus X^{τ} is not T_2 -equivariantly formal.

 299

э

Ξ

 \sim

 \overline{a}

∍

Let X be a T-space with a compatible involution τ . There is a well-defined action of the group $G = T \rtimes \mathbb{Z}/2$ on X.

Let X be a T-space with a compatible involution τ . There is a well-defined action of the group $G = T \rtimes \mathbb{Z}/2$ on X. We have

Theorem (M. Franz - S.)

Assume char(k) = 2. If X is G-equivariantly formal then its real locus X^{τ} is T_2 -equivariantly formal.

Let X be a T-space with a compatible involution τ . There is a well-defined action of the group $G = T \rtimes \mathbb{Z}/2$ on X. We have

Theorem (M. Franz - S.)

Assume char(k) = 2. If X is G-equivariantly formal then its real locus X^{τ} is T_2 -equivariantly formal.

THANKS!!!

References

- **T.** Frankel. Fixed Points and Torsion on Kähler Manifolds. Annals of Mathematics, Second Series, Vol. 70, No. 1 P. 1-8. 1959.
-
- A. Borel. Seminar on Transformation Groups. Ann of Math Stud, No 46. Princeton: Princeton Univ Press, 1960.
-
- M. Atiyah. Convexity and commuting Hamiltonians. Bull. London Math Soc. 14. P.1-15. 1982.
-
- H. Duistermaat. Convexity and tightness for restrictions of Hamiltonian functions to fixed point sets of an anti-symplectic involutions. Trans AMS 275. 1983.
-
- D. Biss, V. Guillemin, T. Holm. The mod2 cohomology of fixed point sets of anti-symplectic involutions, Adv. in Math., Vol. 185, Is. 2, P. 370-399, 2004.

 \rightarrow \rightarrow \rightarrow \rightarrow

つくい