Equivariant Cohomology for a torus action with a compatible involution.

Sergio Chaves

University of Western Ontario

GSCAGT Temple University Philadelphia, June 2018

・ロト ・日 ・ ・ ヨ ・ ・

문 문 문

Let $T = (S^1)^n$ be a torus acting on a compact symplectic manifold (M, ω) in a Hamiltonian way. Let

$$M^{T} = \{x \in M : g \cdot x = x, \forall g \in T\}$$

denote the fixed point subspace.

Let $T = (S^1)^n$ be a torus acting on a compact symplectic manifold (M, ω) in a Hamiltonian way. Let

$$M^{T} = \{x \in M : g \cdot x = x, \forall g \in T\}$$

denote the fixed point subspace. Then

Theorem (T. Frankel. 1959)

$$H^*(M;k) \cong \bigoplus_{i=1}^m H^{*-d_i}(F_i;k),$$

where F_1, \ldots, F_m are the connected components of M^T , d_i is the Morse-Bott index associated to F_i and char(k) = 0.

• For a topological space X with an action of a compact topological group G, how are X and X^G algebraically related?

- For a topological space X with an action of a compact topological group G, how are X and X^G algebraically related?
- Is there an algebraic invariant of X that captures both the topology and the nature of the action?

- For a topological space X with an action of a compact topological group G, how are X and X^G algebraically related?
- Is there an algebraic invariant of X that captures both the topology and the nature of the action?
- The singular cohomology $H^*(X)$ depends just on the topology of X.

- For a topological space X with an action of a compact topological group G, how are X and X^G algebraically related?
- Is there an algebraic invariant of X that captures both the topology and the nature of the action?
- The singular cohomology $H^*(X)$ depends just on the topology of X.

How about the cohomology of the orbit space $H^*(X/G)$?

- For a topological space X with an action of a compact topological group G, how are X and X^G algebraically related?
- Is there an algebraic invariant of X that captures both the topology and the nature of the action?
- The singular cohomology $H^*(X)$ depends just on the topology of X.

How about the cohomology of the orbit space $H^*(X/G)$?

Example

Let $X = S^2$ and $G = \mathbb{Z}/2$ be the antipodal action on X. Then $H^*(X/G) \cong H^*(\mathbb{R}P^2)$.

Sergio Chaves Equivariant Cohomology

< ロ > < 部 > < き > < き > <</p>

Let $X = S^2$.

< ロ > < 部 > < き > < き > ...

Let $X = S^2$.

Let $X = S^2$.

Let $X = S^2$.

Here, $H^*(X/G) \cong H^*(\{pt\})$.

æ

イロト イヨト イヨト イヨト

Motivation The Borel construction Equivariant formality 2-Torus actions Compatible involutions

Enlarging the sphere

The free action of $G = S^1$ on S^{2n+1} induces a free action on S^{∞} , where S^{∞} is the colimit of the complex spheres $S^1 \subset S^3 \subset \cdots$.

The free action of $G = S^1$ on S^{2n+1} induces a free action on S^{∞} , where S^{∞} is the colimit of the complex spheres $S^1 \subset S^3 \subset \cdots$.

It is not hard to prove that $S^{\infty} \simeq \{pt\}$.

The free action of $G = S^1$ on S^{2n+1} induces a free action on S^{∞} , where S^{∞} is the colimit of the complex spheres $S^1 \subset S^3 \subset \cdots$.

It is not hard to prove that $S^{\infty} \simeq \{pt\}$.

Consider $\tilde{S^2} = S^{\infty} \times S^2$ with the diagonal action of *G*.

The free action of $G = S^1$ on S^{2n+1} induces a free action on S^{∞} , where S^{∞} is the colimit of the complex spheres $S^1 \subset S^3 \subset \cdots$.

It is not hard to prove that $S^{\infty} \simeq \{pt\}$.

Consider $\tilde{S}^2 = S^{\infty} \times S^2$ with the diagonal action of G. Then • $\tilde{S}^2 \simeq S^2$.

• G acts freely on $\tilde{S^2}$.

The free action of $G = S^1$ on S^{2n+1} induces a free action on S^{∞} , where S^{∞} is the colimit of the complex spheres $S^1 \subset S^3 \subset \cdots$.

It is not hard to prove that $S^{\infty} \simeq \{pt\}$.

Consider $\tilde{S}^2 = S^{\infty} \times S^2$ with the diagonal action of G. Then • $\tilde{S}^2 \simeq S^2$.

• G acts freely on $\tilde{S^2}$.

Now we can study the cohomology ring $H^*(\tilde{S}^2/S^1)$.

The free action of $G = S^1$ on S^{2n+1} induces a free action on S^{∞} , where S^{∞} is the colimit of the complex spheres $S^1 \subset S^3 \subset \cdots$.

It is not hard to prove that $S^{\infty} \simeq \{pt\}$.

Consider $\tilde{S}^2 = S^{\infty} \times S^2$ with the diagonal action of G. Then • $\tilde{S}^2 \simeq S^2$.

• G acts freely on $\tilde{S^2}$.

Now we can study the cohomology ring $H^*(\tilde{S}^2/S^1)$.

Later we will see that $H^*(ilde{S^2}/S^1)$ is non-trivial.

In general, for a *G*-space *X*, we want to replace it by a *G*-space \tilde{X} where *G* acts freely and $X \simeq \tilde{X}$.

In general, for a *G*-space *X*, we want to replace it by a *G*-space \tilde{X} where *G* acts freely and $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely.

In general, for a G-space X, we want to replace it by a G-space \tilde{X} where G acts freely and $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely.

Theorem (J. Milnor. 1956)

For any topological group G, there exist a unique (up to homotopy) contractible space EG with a free action of G.

In general, for a G-space X, we want to replace it by a G-space \tilde{X} where G acts freely and $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely.

Theorem (J. Milnor. 1956)

For any topological group G, there exist a unique (up to homotopy) contractible space EG with a free action of G.

The orbit space BG := EG/G is called *the classifying space of G*.

In general, for a *G*-space *X*, we want to replace it by a *G*-space \tilde{X} where *G* acts freely and $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely.

Theorem (J. Milnor. 1956)

For any topological group G, there exist a unique (up to homotopy) contractible space EG with a free action of G.

The orbit space BG := EG/G is called *the classifying space of G*.

Example

• $G = S^1$, $EG = S^\infty$, $BG = \mathbb{C}P^\infty$.

•
$$G=\mathbb{Z}/2$$
, $EG=S^\infty$, $BG=\mathbb{R}P^\infty$.

•
$$G = \mathbb{Z}$$
, $EG = \mathbb{R}$, $BG = S^1$.

< 同 > < 国 > < 国 >

Equivariant Cohomology

Equivariant Cohomology

Definition (Seminar on transformation groups - A. Borel. 1960.) For a *G*-space *X*, the Borel construction of *X* is the space $X_G = (EG \times X)/G$ and the *G*-equivariant cohomology of *X* is defined as

 $H^*_G(X) := H^*(X_G).$

Equivariant Cohomology

Definition (Seminar on transformation groups - A. Borel. 1960.)

For a *G*-space *X*, the Borel construction of *X* is the space $X_G = (EG \times X)/G$ and the *G*-equivariant cohomology of *X* is defined as

 $H^*_G(X) := H^*(X_G).$

For any G-spaces X, Y and a G-equivariant map $f : X \to Y$ (i.e. $f(g \cdot x) = g \cdot f(x)$), there is an induced map

$$f_G^*: H_G^*(Y) \to H_G^*(X).$$

• If G acts on X trivially (i.e. $X^G = X$) we have

 $X_G \cong BG \times X$ and $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$.

• If G acts on X trivially (i.e. $X^G = X$) we have

 $X_G \cong BG \times X$ and $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$.

Then for any G-space X, $H^*_G(X^G) \cong H^*(BG) \otimes H^*(X^G)$.

• If G acts on X trivially (i.e. $X^G = X$) we have

 $X_G \cong BG \times X$ and $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$. Then for any G-space X, $H^*_G(X^G) \cong H^*(BG) \otimes H^*(X^G)$.

• If G acts on X freely, we have

 $X_G \simeq X/G$ and $H^*_G(X) \cong H^*(X/G)$.

伺 ト イヨ ト イヨト

Motivation The Borel construction Equivariant formality 2-Torus actions Compatible involutions

A module structure on $H^*_{\mathcal{G}}(X)$

I> < Ξ > <</p>

A module structure on $H^*_G(X)$

The constant map $X \to \{pt\}$ is *G*-equivariant and gives rise to a map

$$p: H^*_G({pt}) \to H^*_G(X).$$
A module structure on $H^*_G(X)$

The constant map $X \to \{pt\}$ is *G*-equivariant and gives rise to a map

$$p: H^*_G({pt}) \to H^*_G(X).$$

Since $\{pt\}_G \cong BG$, p induces a $H^*(BG)$ -module structure on $H^*_G(X)$.

→ < Ξ → <</p>

A module structure on $H^*_G(X)$

The constant map $X \to \{pt\}$ is *G*-equivariant and gives rise to a map

$$p: H^*_G({pt}) \to H^*_G(X).$$

Since $\{pt\}_G \cong BG$, p induces a $H^*(BG)$ -module structure on $H^*_G(X)$.

Definition (Equivariant formality)

A G-space X is said to be G-equivariantly formal if

$$H^*_G(X) \cong H^*(BG) \otimes H^*(X)$$

as $H^*(BG)$ -modules.

→ < Ξ → <</p>

A module structure on $H^*_{\mathcal{G}}(X)$

The constant map $X \to \{pt\}$ is *G*-equivariant and gives rise to a map

$$p: H^*_G({pt}) \to H^*_G(X).$$

Since $\{pt\}_G \cong BG$, p induces a $H^*(BG)$ -module structure on $H^*_G(X)$.

Definition (Equivariant formality)

A G-space X is said to be G-equivariantly formal if

$$H^*_G(X) \cong H^*(BG) \otimes H^*(X)$$

as $H^*(BG)$ -modules.

In particular, X^G is G-equivariantly formal.

When is *X G*-equivariantly formal?

▶ < ∃ ▶</p>

When is X *G*-equivariantly formal?

For $z \in EG$, the section $i_z : X \to X_G$ given by $i_z(x) = [z, x]$ induces a map

 $r: H^*_G(X) \to H^*(X).$

▶ < ∃ ▶</p>

When is X G-equivariantly formal?

For $z \in EG$, the section $i_z : X \to X_G$ given by $i_z(x) = [z, x]$ induces a map

$$r: H^*_G(X) \to H^*(X).$$

Proposition

Let X be a G-space. The following are equivalent:

When is X G-equivariantly formal?

For $z \in EG$, the section $i_z : X \to X_G$ given by $i_z(x) = [z, x]$ induces a map

$$r: H^*_G(X) \to H^*(X).$$

Proposition

Let X be a G-space. The following are equivalent:

- X is G-equivariantly formal.
- The map $r: H^*_G(X) \to H^*(X)$ is surjective.
- $H^*_G(X)$ is a free $H^*(BG)$ -module (if G is connected).

æ

Now assume that G is a compact Lie group and let $T \subseteq G$ be the maximal torus on G.

Now assume that G is a compact Lie group and let $T \subseteq G$ be the maximal torus on G. Then

Theorem

X is G-equivariantly formal if and only if X is T-equivariantly formal.

Now assume that G is a compact Lie group and let $T \subseteq G$ be the maximal torus on G. Then

Theorem

X is G-equivariantly formal if and only if X is T-equivariantly formal.

So we can restrict the study of equivariant formality of compact Lie group actions to torus actions.

The Betti number criterion

æ

The Betti number criterion

For a topological space X, denote its Betti number by

$$b(X) = \sum_{i\geq 0} \dim_k H^i(X).$$

The Betti number criterion

For a topological space X, denote its Betti number by

$$b(X) = \sum_{i \ge 0} \dim_k H^i(X).$$

Theorem (Borel. 1960)

Let T be a torus and X a T-space. X is T-equivariantly formal if and only if $b(X) = b(X^G)$.

The Betti number criterion

For a topological space X, denote its Betti number by

$$b(X) = \sum_{i\geq 0} \dim_k H^i(X).$$

Theorem (Borel. 1960)

Let T be a torus and X a T-space. X is T-equivariantly formal if and only if $b(X) = b(X^G)$.

Example

Under this theorem, S^2 with the rotation action of S^1 is S^1 -equivariantly formal.

伺 ト イヨト イヨト

The Betti number criterion

For a topological space X, denote its Betti number by

$$b(X) = \sum_{i \ge 0} \dim_k H^i(X).$$

Theorem (Borel. 1960)

Let T be a torus and X a T-space. X is T-equivariantly formal if and only if $b(X) = b(X^G)$.

Example

Under this theorem, S^2 with the rotation action of S^1 is S^1 -equivariantly formal. That is,

$$H^*_{S^1}(S^2) \cong H^*(BS^1) \otimes H^*(S^2).$$

< 回 > < 回 > < 回 >

Equivariant formality on Symplectic manifolds

Equivariant formality on Symplectic manifolds

The Frankel-Atiyah's theorem

$$H^*(M;k) \cong \bigoplus_{i=1}^m H^{*-d_i}(F_i;k), \quad \left(\bigcup_{i=1}^m F_i = M^T\right)$$

implies that $b(M) = b(M^T)$.

Equivariant formality on Symplectic manifolds

The Frankel-Atiyah's theorem

$$H^*(M;k) \cong \bigoplus_{i=1}^m H^{*-d_i}(F_i;k), \quad \left(\bigcup_{i=1}^m F_i = M^T\right)$$

implies that $b(M) = b(M^T)$. So we get

Theorem

For a Hamiltonian action of a torus T on a symplectic manifold M, M is T-equivariantly formal and

$$H^*_T(M) \cong H^*(BT) \otimes H^*(M) \cong \bigoplus_{i=1}^m H^{*-d_i}_T(F_i).$$

Equivariant formality for 2-torus actions

Equivariant formality for 2-torus actions

A 2-torus is a group $T_2 \cong (\mathbb{Z}/2)^n$ for some $n \ge 1$.

Equivariant formality for 2-torus actions

A 2-torus is a group $T_2 \cong (\mathbb{Z}/2)^n$ for some $n \ge 1$.

Now assume char(k) = 2. Similar to the case of torus actions we have

Theorem

Let X be a T_2 -space. X is T_2 -equivariantly formal if and only if

 $b(X)=b(X^{T_2}).$

Equivariant formality for 2-torus actions

A 2-torus is a group $T_2 \cong (\mathbb{Z}/2)^n$ for some $n \ge 1$.

Now assume char(k) = 2. Similar to the case of torus actions we have

Theorem

Let X be a T_2 -space. X is T_2 -equivariantly formal if and only if

 $b(X) = b(X^{T_2}).$

An action of $\mathbb{Z}/2$ on a topological space X is equivalent to an involution $\tau : X \to X$.

æ

Let $T = (S^1)^n$ be a torus and consider the 2-torus subgroup of $T_2 = \{g \in T : g^2 = e\} \cong (\mathbb{Z}/2)^n$.

Theorem (M. Franz - S.)

For X a T-space, X is T-equivariantly formal if and only if X is T_2 -equivariantly formal.

Let $T = (S^1)^n$ be a torus and consider the 2-torus subgroup of $T_2 = \{g \in T : g^2 = e\} \cong (\mathbb{Z}/2)^n$.

Theorem (M. Franz - S.)

For X a T-space, X is T-equivariantly formal if and only if X is T_2 -equivariantly formal.

Equivariant formality on char(k) = 2 reduces to study involutions.

Mixing torus action and involutions

Mixing torus action and involutions

Let T be a torus, X be a T-space and $\tau : X \to X$ an involution. We say that τ is compatible with the action of T if for any $g \in G$, $x \in X$.

$$\tau(g\cdot x)=g^{-1}\cdot\tau(x).$$

Mixing torus action and involutions

Let T be a torus, X be a T-space and $\tau : X \to X$ an involution. We say that τ is compatible with the action of T if for any $g \in G$, $x \in X$.

$$\tau(g\cdot x)=g^{-1}\cdot\tau(x).$$

Definition

Mixing torus action and involutions

Let T be a torus, X be a T-space and $\tau : X \to X$ an involution. We say that τ is compatible with the action of T if for any $g \in G$, $x \in X$.

$$\tau(g\cdot x)=g^{-1}\cdot\tau(x).$$

Definition

The fixed point subspace X^{τ} is called the *real locus* of X. X^{τ} inherits a natural action of the 2-torus $T_2 \subseteq T$.

Anti-symplectic involutions

Let (M, ω) be a symplectic manifold with a Hamiltonian action of a torus T. An anti-symplectic involution $\tau : M \to M$ is a smooth involution such that $\tau^* \omega = -\omega$.

Anti-symplectic involutions

Let (M, ω) be a symplectic manifold with a Hamiltonian action of a torus T. An anti-symplectic involution $\tau : M \to M$ is a smooth involution such that $\tau^* \omega = -\omega$.

Theorem (H. Duistermaat. 1983)

Let M be a symplectic manifold with a Hamiltonian action of a torus T and a compatible anti-symplectic involution τ . Then

$$H^*(M^{\tau}) \cong \bigoplus_{i=1}^m H^{*-\frac{d_i}{2}}(F_i^{\tau})$$

and
$$b(M^{\tau}) = b(M^{\tau} \cap M^{T})$$
, where $M^{T} = \bigcup_{i=1}^{m} F_{i}$.

Equivariant formality of the real locus

Equivariant formality of the real locus

Duistermaat's isomorphism holds at the level of $\mathcal{T}_2\text{-equivariant}$ cohomology.

Equivariant formality of the real locus

Duistermaat's isomorphism holds at the level of $\mathcal{T}_{2}\mbox{-equivariant}$ cohomology. Namely,

Theorem (D. Biss - V. Guillemin - T. Holm - 2004)

$$H_{T_2}^*(M^{\tau}) \cong \bigoplus_{i=1}^m H_{T_2}^{*-\frac{d_i}{2}}(F_i^{\tau}).$$
• $b(M^{\tau}) = b(M^{\tau} \cap M^{T_2}) = b((M^{\tau})^{T_2})$ and thus
 $H_{T_2}^*(M^{\tau}) \cong H^*(BT_2) \otimes H^*(M^{\tau}).$

Symplectic case: Moral of the story
Symplectic case: Moral of the story

Let M be a symplectic manifold with an action of a torus T and a compatible involution τ . T acts in a Hamiltonian way on M if and only if M is T-equivariantly formal.

Symplectic case: Moral of the story

Let M be a symplectic manifold with an action of a torus T and a compatible involution τ . T acts in a Hamiltonian way on M if and only if M is T-equivariantly formal. So we have that

Theorem

If M is T-equivariantly formal then the real locus M^{τ} is T_2 -equivariantly formal.

Symplectic case: Moral of the story

Let M be a symplectic manifold with an action of a torus T and a compatible involution τ . T acts in a Hamiltonian way on M if and only if M is T-equivariantly formal. So we have that

Theorem

If M is T-equivariantly formal then the real locus M^{τ} is T_2 -equivariantly formal.

Does this situation hold in a more general setting?

The topological case

For just topological spaces, the answer is no!.

Example

Let
$$X = S^3 \subseteq \mathbb{C}^2$$
, let $T = S^1$ act on X by $g \cdot (u, z) = (gu, z)$ and
let τ be the involution $\tau(u, z) = (\bar{u}, -z)$.

The topological case

For just topological spaces, the answer is no!.

Example

Let $X = S^3 \subseteq \mathbb{C}^2$, let $T = S^1$ act on X by $g \cdot (u, z) = (gu, z)$ and let τ be the involution $\tau(u, z) = (\bar{u}, -z)$. So

$$b(X) = b(X^{T}) = b(X^{T}) = 2$$
 and $b((X^{T})^{T_{2}}) = 0$

The topological case

For just topological spaces, the answer is no!.

Example

Let $X = S^3 \subseteq \mathbb{C}^2$, let $T = S^1$ act on X by $g \cdot (u, z) = (gu, z)$ and let τ be the involution $\tau(u, z) = (\bar{u}, -z)$. So

$$b(X) = b(X^{T}) = b(X^{\tau}) = 2$$
 and $b((X^{\tau})^{T_{2}}) = 0$.

Therefore, X is T-equivariantly formal but its real locus X^{τ} is not T_2 -equivariantly formal.

Let X be a T-space with a compatible involution τ . There is a well-defined action of the group $G = T \rtimes \mathbb{Z}/2$ on X.

Let X be a T-space with a compatible involution τ . There is a well-defined action of the group $G = T \rtimes \mathbb{Z}/2$ on X. We have

Theorem (M. Franz - S.)

Assume char(k) = 2. If X is G-equivariantly formal then its real locus X^{τ} is T_2 -equivariantly formal.

Let X be a T-space with a compatible involution τ . There is a well-defined action of the group $G = T \rtimes \mathbb{Z}/2$ on X. We have

Theorem (M. Franz - S.)

Assume char(k) = 2. If X is G-equivariantly formal then its real locus X^{τ} is T_2 -equivariantly formal.

THANKS!!!

References

- 🦠 T. Frankel. Fixed Points and Torsion on Kähler Manifolds. Annals of Mathematics, Second Series, Vol. 70, No. 1 P. 1-8. 1959.
- 💊 A. Borel. *Seminar on Transformation Groups*. Ann of Math Stud. No 46. Princeton: Princeton Univ Press. 1960.
- N. Atiyah. Convexity and commuting Hamiltonians. Bull. London Math Soc. 14, P.1-15, 1982.
- H. Duistermaat. Convexity and tightness for restrictions of Hamiltonian functions to fixed point sets of an anti-symplectic involutions. Trans AMS 275, 1983.

N. D. Biss, V. Guillemin, T. Holm. The mod2 cohomology of fixed point sets of anti-symplectic involutions, Adv. in Math., Vol. 185, Is. 2, P. 370-399, 2004.