Equivariant Cohomology

for a torus action with a compatible involution.

Sergio Chaves
University of Western Ontario

GSCAGT
Temple University
Philadelphia, June 2018

Sergio Chaves Equivariant Cohomology



Motivation

Motivation

Sergio Chaves Equivariant Cohomology



Motivation
Motivation

Let T = (S)" be a torus acting on a compact symplectic manifold
(M,w) in a Hamiltonian way. Let

MT ={xeM:g-x=x,VgeT}

denote the fixed point subspace.
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Motivation
Motivation

Let T = (S)" be a torus acting on a compact symplectic manifold
(M,w) in a Hamiltonian way. Let

MT ={xeM:g-x=x,VgeT}

denote the fixed point subspace. Then

Theorem (T. Frankel. 1959)

m
H*(M; k) =2 @5 H*~%(F;; k),
i=1
where Fi, ..., F, are the connected components of M, d; is the
Morse-Bott index associated to F; and char(k) = 0.
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Motivation

e For a topological space X with an action of a compact
topological group G, how are X and X© algebraically related?

Sergio Chaves Equivariant Cohomology



Motivation
Motivation

e For a topological space X with an action of a compact
topological group G, how are X and X© algebraically related?

@ Is there an algebraic invariant of X that captures both the
topology and the nature of the action?
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@ Is there an algebraic invariant of X that captures both the
topology and the nature of the action?

@ The singular cohomology H*(X) depends just on the topology
of X.
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Motivation
Motivation

e For a topological space X with an action of a compact
topological group G, how are X and X© algebraically related?

@ Is there an algebraic invariant of X that captures both the
topology and the nature of the action?

@ The singular cohomology H*(X) depends just on the topology
of X.

How about the cohomology of the orbit space H*(X/G)?
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Motivation
Motivation

e For a topological space X with an action of a compact
topological group G, how are X and X© algebraically related?

@ Is there an algebraic invariant of X that captures both the
topology and the nature of the action?
@ The singular cohomology H*(X) depends just on the topology
of X.
How about the cohomology of the orbit space H*(X/G)?

Let X = S? and G = Z/2 be the antipodal action on X. Then
H*(X/G) 2 H*(RP?).
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Let X = S2.
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Let X = S2.
X/G
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Let X = S2.
X/G
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Let X = S2.
X/G

_ cl ]
G=5C_|

Here, H*(X/G) = H*({pt}).
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The Borel construction
Enlarging the sphere
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The Borel construction
Enlarging the sphere

The free action of G = S on §2"*1 induces a free action on S,
where S is the colimit of the complex spheres ST c S3 C ...
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The free action of G = S on §2"*1 induces a free action on S,
where S is the colimit of the complex spheres ST c S3 C ...

It is not hard to prove that S ~ {pt}.
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The Borel construction
Enlarging the sphere

The free action of G = S on §2"*1 induces a free action on S,
where S is the colimit of the complex spheres ST c S3 C ...

It is not hard to prove that S ~ {pt}.

Consider 52 = 5> x S$2 with the diagonal action of G.
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The Borel construction
Enlarging the sphere

The free action of G = S on §2"*1 induces a free action on S,
where S is the colimit of the complex spheres ST c S3 C ...

It is not hard to prove that S ~ {pt}.

Consider 52 = 5> x S$2 with the diagonal action of G. Then
0 52~ 52
o G acts freely on S2.
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The Borel construction
Enlarging the sphere

The free action of G = S on §2"*1 induces a free action on S,
where S is the colimit of the complex spheres ST c S3 C ...

It is not hard to prove that S ~ {pt}.

Consider 52 = 5> x S$2 with the diagonal action of G. Then
0 52~ 52
o G acts freely on S2.

Now we can study the cohomology ring H*(§2/51).
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The Borel construction
Enlarging the sphere

The free action of G = S on §2"*1 induces a free action on S,
where S is the colimit of the complex spheres ST c S3 C ...

It is not hard to prove that S ~ {pt}.

Consider 52 = 5> x S$2 with the diagonal action of G. Then
0 52~ 52
o G acts freely on S2.

Now we can study the cohomology ring H*(§2/51).

Later we will see that H*(52/S%) is non-trivial.
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The Borel construction
Borel's amazing idea

In general, for a G-space X, we want to replace it by a G-space X
where G acts freely and X ~ X.
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Keypoint: Find a contractible space E where G acts freely.
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The Borel construction
Borel's amazing idea

In general, for a G-space X, we want to replace it by a G-space X
where G acts freely and X ~ X.

Keypoint: Find a contractible space E where G acts freely.

Theorem (J. Milnor. 1956)

For any topological group G, there exist a unique (up to
homotopy) contractible space EG with a free action of G.
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In general, for a G-space X, we want to replace it by a G-space X
where G acts freely and X ~ X.

Keypoint: Find a contractible space E where G acts freely.

Theorem (J. Milnor. 1956)

For any topological group G, there exist a unique (up to
homotopy) contractible space EG with a free action of G.

The orbit space BG := EG/G is called the classifying space of G.
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The Borel construction
Borel's amazing idea

In general, for a G-space X, we want to replace it by a G-space X
where G acts freely and X ~ X.

Keypoint: Find a contractible space E where G acts freely.

Theorem (J. Milnor. 1956)

For any topological group G, there exist a unique (up to
homotopy) contractible space EG with a free action of G.

The orbit space BG := EG/G is called the classifying space of G.

o G=S! EG =5, BG=CP>.

o G=17/2, EG =5, BG=RP>.
e G=17,EG=R, BG =S’
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Equivariant Cohomology
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The Borel construction
Equivariant Cohomology

Definition (Seminar on transformation groups - A. Borel. 1960.)

For a G-space X, the Borel construction of X is the space
Xe = (EG x X)/G and the G-equivariant cohomology of X is
defined as

HEL(X) == H*(X).
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The Borel construction
Equivariant Cohomology

Definition (Seminar on transformation groups - A. Borel. 1960.)

For a G-space X, the Borel construction of X is the space
Xe = (EG x X)/G and the G-equivariant cohomology of X is
defined as

Hz(X) == H*(Xe).

For any G-spaces X, Y and a G-equivariant map f : X — Y (i.e.
f(g-x)=g-f(x)), there is an induced map

fe : Hz(Y) — Hg(X).
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The Borel construction
Particular group actions
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The Borel construction
Particular group actions

o If G acts on X trivially (i.e. X® = X) we have

X = BG x X and H:(X) = H*(BG) ® H*(X).
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The Borel construction
Particular group actions

o If G acts on X trivially (i.e. X® = X) we have
X = BG x X and HE(X) = H*(BG) ®@ H*(X).

Then for any G-space X, Hx(X®) = H*(BG) ® H*(X©).
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The Borel construction
Particular group actions

o If G acts on X trivially (i.e. X® = X) we have
X = BG x X and HE(X) = H*(BG) ®@ H*(X).

Then for any G-space X, Hx(X®) = H*(BG) ® H*(X©).

@ If G acts on X freely, we have

Xe ~ X/G and Hg(X) = H*(X/G).
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The Borel construction

A module structure on HZ(X)
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The Borel construction

A module structure on HZ(X)

The constant map X — {pt} is G-equivariant and gives rise to a
map
p: Ha({pt}) — HE(X).
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The Borel construction

A module structure on HZ(X)

The constant map X — {pt} is G-equivariant and gives rise to a
map

p: Ha({pt}) = HE(X).

Since {pt}¢ = BG, p induces a H*(BG)-module structure on
Hg(X).
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The Borel construction

A module structure on HZ(X)

The constant map X — {pt} is G-equivariant and gives rise to a
map

p: Ha({pt}) = HE(X).

Since {pt}¢ = BG, p induces a H*(BG)-module structure on
Hg(X).

Definition (Equivariant formality)

A G-space X is said to be G-equivariantly formal if
Hz(X) = H*(BG) @ H*(X)

as H*(BG)-modules.
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The Borel construction

A module structure on HZ(X)

The constant map X — {pt} is G-equivariant and gives rise to a
map

p: Ha({pt}) = HE(X).

Since {pt}¢ = BG, p induces a H*(BG)-module structure on
Hg(X).

Definition (Equivariant formality)

A G-space X is said to be G-equivariantly formal if
Hz(X) = H*(BG) @ H*(X)

as H*(BG)-modules.

In particular, X¢ is G-equivariantly formal.
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Equivariant formality
When is X G-equivariantly formal?
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Equivariant formality
When is X G-equivariantly formal?

For z € EG, the section i, : X — X¢ given by i,(x) = [z, x]
induces a map
r: HG(X) — H*(X).
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Equivariant formality
When is X G-equivariantly formal?

For z € EG, the section i, : X — X¢ given by i,(x) = [z, x]
induces a map
r: HG(X) — H*(X).

Proposition

Let X be a G-space. The following are equivalent:
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Equivariant formality
When is X G-equivariantly formal?

For z € EG, the section i, : X — X¢ given by i,(x) = [z, x]
induces a map
r: HG(X) — H*(X).

Proposition

Let X be a G-space. The following are equivalent:
e X is G-equivariantly formal.
@ The map r: HE(X) — H*(X) is surjective.
e HE(X) is a free H*(BG)-module (if G is connected).
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Equivariant formality
Reduction to torus actions
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Equivariant formality
Reduction to torus actions

Now assume that G is a compact Lie group and let T C G be the
maximal torus on G.
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Equivariant formality
Reduction to torus actions

Now assume that G is a compact Lie group and let T C G be the
maximal torus on G. Then

X is G-equivariantly formal if and only if X is T-equivariantly
formal.
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Equivariant formality
Reduction to torus actions

Now assume that G is a compact Lie group and let T C G be the
maximal torus on G. Then

X is G-equivariantly formal if and only if X is T-equivariantly
formal.

So we can restrict the study of equivariant formality of compact
Lie group actions to torus actions.

Sergio Chaves Equivariant Cohomology



Equivariant formality
The Betti number criterion
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Equivariant formality
The Betti number criterion

For a topological space X, denote its Betti number by

b(X) = dim, H'(X).

i>0
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Equivariant formality
The Betti number criterion

For a topological space X, denote its Betti number by

b(X) = dim, H'(X).

i>0

Theorem (Borel. 1960)

Let T be a torus and X a T-space. X is T-equivariantly formal if
and only if b(X) = b(X©).
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Equivariant formality
The Betti number criterion

For a topological space X, denote its Betti number by

b(X) = dim, H'(X).

i>0

Theorem (Borel. 1960)

Let T be a torus and X a T-space. X is T-equivariantly formal if
and only if b(X) = b(X©).

Under this theorem, S2 with the rotation action of St is
Sl-equivariantly formal.
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Equivariant formality
The Betti number criterion

For a topological space X, denote its Betti number by

b(X) = dim, H'(X).

i>0

Theorem (Borel. 1960)

Let T be a torus and X a T-space. X is T-equivariantly formal if
and only if b(X) = b(X©).

Under this theorem, S2 with the rotation action of St is
Sl—equivariantly formal. That is,

H%.(S?) = H*(BS') ® H*(S?).
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Equivariant formality
Equivariant formality on Symplectic manifolds
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Equivariant formality
Equivariant formality on Symplectic manifolds

The Frankel-Atiyah’s theorem
Fi= A/IT)
1

>

H*(M; k) = é H*=%(F;; k), (

i=1 i

implies that b(M) = b(MT).
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Equivariant formality
Equivariant formality on Symplectic manifolds

The Frankel-Atiyah's theorem
m m
H*(M; k) = @5 H* % (Fi; k), (U Fi = A/IT)
i=1 i=1
implies that b(M) = b(MT). So we get

Theorem

For a Hamiltonian action of a torus T on a symplectic manifold M,
M is T-equivariantly formal and

H%(M) = H*(BT) @ H*(M @H* % (F).
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2-Torus actions
Equivariant formality for 2-torus actions
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2-Torus actions
Equivariant formality for 2-torus actions

A 2-torus is a group T, =2 (Z/2)" for some n > 1.
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2-Torus actions
Equivariant formality for 2-torus actions

A 2-torus is a group T, =2 (Z/2)" for some n > 1.

Now assume char(k) = 2. Similar to the case of torus actions we
have

Let X be a Ty-space. X is To-equivariantly formal if and only if

b(X) = b(X ™).
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2-Torus actions
Equivariant formality for 2-torus actions

A 2-torus is a group T, =2 (Z/2)" for some n > 1.

Now assume char(k) = 2. Similar to the case of torus actions we
have

Theorem

Let X be a Ty-space. X is To-equivariantly formal if and only if

b(X) = b(X ™).

An action of /2 on a topological space X is equivalent to an
involution 7 : X — X.
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2-Torus actions
Reduction to 2-torus actions
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2-Torus actions

Reduction to 2-torus actions

Let T = (S')" be a torus and consider the 2-torus subgroup of
To={geT:g>=e}=(2/2)".

Theorem (M. Franz - S.)

For X a T-space, X is T-equivariantly formal if and only if X is
Ty-equivariantly formal.
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2-Torus actions

Reduction to 2-torus actions

Let T = (S')" be a torus and consider the 2-torus subgroup of
To={geT:g>=e}=(2/2)".

Theorem (M. Franz - S.)

For X a T-space, X is T-equivariantly formal if and only if X is
Ty-equivariantly formal.

Equivariant formality on char(k) = 2 reduces to study involutions.

Sergio Chaves Equivariant Cohomology



Compatible involutions
Mixing torus action and involutions
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Compatible involutions
Mixing torus action and involutions

Let T be a torus, X be a T-space and 7 : X — X an involution.
We say that 7 is compatible with the action of T if for any g € G,
x e X.

T(g-x) =g ' 7(x).
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Compatible involutions
Mixing torus action and involutions

Let T be a torus, X be a T-space and 7 : X — X an involution.
We say that 7 is compatible with the action of T if for any g € G,

x e X.
T(g-x) =g ' 7(x).

Definition
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Compatible involutions
Mixing torus action and involutions

Let T be a torus, X be a T-space and 7 : X — X an involution.
We say that 7 is compatible with the action of T if for any g € G,
x € X.

T(g-x) =g " 7(x).

Definition

The fixed point subspace X7 is called the real locus of X. X™
inherits a natural action of the 2-torus To C T.
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Compatible involutions

Anti-symplectic involutions

Let (M,w) be a symplectic manifold with a Hamiltonian action of
a torus T. An anti-symplectic involution 7 : M — M is a smooth
involution such that 7w = —w.
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Compatible involutions

Anti-symplectic involutions

Let (M,w) be a symplectic manifold with a Hamiltonian action of
a torus T. An anti-symplectic involution 7 : M — M is a smooth
involution such that 7w = —w.

Theorem (H. Duistermaat. 1983)

Let M be a symplectic manifold with a Hamiltonian action of a
torus T and a compatible anti-symplectic involution 7. Then

HH (M) = @D HE ()

i=1

and b(M™) = b(M™ (\MT), where MT = | ] Fi.
i=1
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Compatible involutions
Equivariant formality of the real locus
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Compatible involutions
Equivariant formality of the real locus

Duistermaat’s isomorphism holds at the level of T-equivariant
cohomology.
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Compatible involutions
Equivariant formality of the real locus

Duistermaat’s isomorphism holds at the level of T-equivariant
cohomology. Namely,

Theorem (D. Biss - V. Guillemin - T. Holm - 2004)

Hy, (M™) @ HT2 F,T
o b(M™) = b(M™ N MT2) = b((M™)"2) and thus

5 (M7) = H*(BTy) ® H*(M").
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Compatible involutions
Symplectic case: Moral of the story
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Compatible involutions
Symplectic case: Moral of the story

Let M be a symplectic manifold with an action of a torus T and a
compatible involution 7. T acts in a Hamiltonian way on M if and
only if M is T-equivariantly formal.
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Compatible involutions
Symplectic case: Moral of the story

Let M be a symplectic manifold with an action of a torus T and a
compatible involution 7. T acts in a Hamiltonian way on M if and
only if M is T-equivariantly formal. So we have that

If M is T-equivariantly formal then the real locus M” is
T»-equivariantly formal.
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Compatible involutions
Symplectic case: Moral of the story

Let M be a symplectic manifold with an action of a torus T and a
compatible involution 7. T acts in a Hamiltonian way on M if and
only if M is T-equivariantly formal. So we have that

If M is T-equivariantly formal then the real locus M” is
T»-equivariantly formal.

Does this situation hold in a more general setting?
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Compatible involutions
The topological case

For just topological spaces, the answer is nol.

Example

Let X =S3CC? let T=S"acton X by g-(u,z) = (gu, z) and
let 7 be the involution 7(u, z) = (&, —z).

Sergio Chaves Equivariant Cohomology



Compatible involutions
The topological case

For just topological spaces, the answer is nol.

Example

Let X =S3CC? let T=S"acton X by g-(u,z) = (gu, z) and
let 7 be the involution 7(u, z) = (7, —z). So

b(X) = b(XT) = b(X") =2 and b((XT)"?) = 0.
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Compatible involutions
The topological case

For just topological spaces, the answer is nol.

Example
Let X =S3CC? let T=S"acton X by g-(u,z) = (gu, z) and
let 7 be the involution 7(u, z) = (7, —z). So

b(X) = b(XT) = b(X") =2 and b((XT)"?) = 0.

Therefore, X is T-equivariantly formal but its real locus X7 is not
To-equivariantly formal.
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Compatible involutions
Enlarging the acting group

Sergio Chaves Equivariant Cohomology



Compatible involutions
Enlarging the acting group

Let X be a T-space with a compatible involution 7. There is a
well-defined action of the group G = T x Z/2 on X.
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Compatible involutions
Enlarging the acting group

Let X be a T-space with a compatible involution 7. There is a
well-defined action of the group G = T x Z/2 on X. We have

Theorem (M. Franz - S.)

Assume char(k) = 2. If X is G-equivariantly formal then its real
locus X7 is T-equivariantly formal.

Sergio Chaves Equivariant Cohomology



Compatible involutions
Enlarging the acting group

Let X be a T-space with a compatible involution 7. There is a
well-defined action of the group G = T x Z/2 on X. We have

Theorem (M. Franz - S.)

Assume char(k) = 2. If X is G-equivariantly formal then its real
locus X7 is T-equivariantly formal.

THANKS!H! )
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Compatible involutions
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