
Clifford Algebras and Milnor’s Conjecture for n = 2.

Milnor K-Theory Final Project

Sergio Chaves

December 2015

Abstract

In this document, a step-by-step proof of the Milnor’s Conjecture for n = 2
is presented. Relating apparently different structures over a field F such that
the Milnor K-theory, the Brauer Group and the Witt Ring was a big field of
study during the last decades. In the first sections all the basic notions and
key algebraic objects mentioned before are introduced; most result are without
proofs which can be found in [Lam]. Then it is focused in studying the properties
of Quaternion Algebras and Clifford algebras, since the core of the proof of
Milnor’s Conjecture relies intrinsically in these objects. Throughout the whole
document, F will denote a field with char(F ) 6= 2.

1 Algebras and Quadratic Forms

Definition 1.1. A F -algebra is a F -vector space A, togheter with a bilinear oper-
ation · : A × A → A called multiplication, which makes A into a ring with unity 1.
Given two F -algebras A,B, a F -algebra homomorphism h : A → B is a linear map
that is also a ring homomorphism.

For instance, the ring Mn(F ), of all n× n matrices over F is a F -algebra.

And ideal I ⊆ A is a linear subspace of A that is also a two-sided ideal with
respect to multiplication in A.

Definition 1.2. Given two F -vector spaces V,W , a tensor product of V and W is
a pair (V ⊗W,ϕ) where V ⊗W is a F -vector space and ϕ : V ×W → V ⊗W is a
bilinear map that satisfies the following universal property: For every F -vector space
Z and any bilinear map f : V ⊗W → Z there is an unique linear map f : V ⊗W → Z
such that f = f ◦ ϕ

If A,B are F -algebras, we can make A⊗B into a F algebra by setting

(a⊗ b) · (a′ ⊗ b′) = (aa′ ⊗ bb′)

for all a, a′ ∈ A, b, b′ ∈ B.
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Given any vector space V , there is a special F -algebra T (V ) together a linear map
i : V → T (V ) with the following universal property: Given any F -algebra A and a
linear map f : V → A, there is a unique F -algebra homomorphism f : T (V )→ A so
that f = f ◦ i.

The algebra T (V ) is called the tensor algebra of V and it may be constructed
as the direct sum

T (V ) =
⊕
i≤0

V ⊕i

where V 0 = F and V ⊕i is the i-fold tensor product of V with itself for i ≥ 1. There
are natural injections in : V ⊕n → T (V ). Since any v ∈ T (V ) can be expressed as a
finite sum

v = v1 + · · · vn
where vi ∈ V ⊕ni , and ni 6= nj if i 6= j; to define multiplication in T (V ) we can use
bilinearity, so it is enough to define the multiplication V ⊕m × V ⊕n → V ⊕m+n by

(u1 ⊗ · · · ⊗ um) · (w1 ⊗ · · · ⊗ wn) = u1 ⊗ · · · ⊗ um ⊗ w1 ⊗ · · · ⊗ wn

The multiplicative unit 1 in T (V ) is the image of i0(1) in T (V ) of the unit of the field
F

Definition 1.3. Let V be a finite F -vector space and B : V × V → F a symetric
bilinear map. Consider q : V → F defined by q(x) = B(x.x) The map q is a quadratic
form and the pair (V, q) is a quadratic space. We say that an element x ∈ V is
isotropic if B(x, x) = 0, otherwise x is anisotropic

The following properties are easy to check:

• q(ax) = a2q(x) for any x ∈ V and a ∈ F .

• q(x+ y)− q(x)− q(y) = 2B(x, y) for any x, y ∈ V .

Since B and q determine each other, we can identify a quadratic space by (V,B). If
(V,B) and (V ′, B′) are quadratic space, we say that they are isometric if there is
a vector space isomorphism τ : V → V ′ such that B(x, y) = B′(τ(x), τ(y)) for any
x, y ∈ V .

If we choose a coordinate basis for V , namely {e1, . . . , en} then the quadratic space
give rise to a quadratic form

f(x1, . . . , xn) =
∑
ij

B(ei, ej)xixj = xtMx

where x = (x1, . . . , xn) and Mq = (B(ei, ej))ij is a n×n symmetric matrix. Choosing
another basis, we get a different matrix M ′q which satisfies the relation

M ′q = CtMqC
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where C is the change of basis matrix. Therefore, a quadratic space (V,B) determines
uniquely an equivalence classes of quadratic forms.

Given two quadratic spaces (V1, B1) and (V2, B2) of dimensions n and m respec-
tively, we can construct a new quadratic space (V,B) by setting V = V1 ⊕ V2 and
B((x1, x2), (y1, y2)) = B1(x1, y1) + B2(x2, y2). This space is called the orthogonal
sum of V1 and V2, the associated quadratic form to B is denoted by q1 ⊥ q2 where qi
is the respective associated quadratic form to Bi, i = 1, 2. In this case V is a n+m
dimensional quadratic space.

On the other hand, by settingW = V1⊗V2 andB(x1⊗x2, y1⊗y2) = B1(x1, y1)B2(x2, y2)
we have also a new quadratic space. This space is called the Kronecker Product
of V1 and V2. The associated quadratic form is q = q1 · q2, in this case (W,B) is a mn
dimensional quadratic space.

Theorem 1.4 (Witt’s Cancellation Theorem). If q, q1, q2 are arbitrary quadratic
forms such that q ⊥ q1 ∼= q ⊥ q2, then q1 ∼= q2.

For any d ∈ F , we shall denote 〈d〉 the isometry class of the 1−dimensional space
corresponding to the quadratic form dx2. The next result allow us to diagonalize any
quadratic form.

Proposition 1.5. If (V,B) is any quadratic space over F , then there exist scalars
d1, . . . , dn ∈ F such that V ∼= 〈d1〉 ⊕ · · · ⊕ 〈dn〉; in other words, the quadratic form
q associated to B is equivalent to some diagonal form d1x

2
1 + · · ·+ dnx

2
n. By setting

notation, we shall write V = 〈d1, . . . dn〉, and the n-ary form by 〈d, . . . , d〉 = n〈d〉.

With this setting, the operations between quadratic spaces are easily computable;
namely , if q1 = 〈a1, . . . , an〉 and q2 = 〈b1, . . . , bm〉 we have

q1 ⊥ q2 = 〈a1, . . . , an, b1, . . . , bm〉

q1 · q2 = 〈a1b1, a1b2, . . . , anbm〉

We discuss now the determinant of a non-singular quadratic form q. This is
defined to be

d(q) = det(Mq) mod (F ∗)2 ∈ F ∗/(F ∗)2

Observe that if q ∼= q′ then M ′q = CtMqC, and hence

d(q′) = det(Mq)(det(C))2 ≡ det(Mq) mod (F ∗)2 = d(q)

Now, if q = 〈d1, . . . , dn〉, then d(q) = d1 · · · dn.

Definition 1.6. A graded algebra A is a finite dimensional F -algebra given in the
form A = A0 ⊕A1, such that F = F · 1 ⊆ A0 and AiAj = Ai+j where the subscripts
are taken modulo 2.
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If a ∈ A, we write ∂(a) = i iff a ∈ Ai. We shall now introduce the graded tensor product
of two graded algebras A,B, denoted by A⊗̂B; the i-component (i = 0, 1) is defined
by

(A⊗̂B)i =
∑
1,j

Aj ⊗Bk where j + k ≡ i mod 2

The multiplication on A⊗̂B is given by

(a⊗ b)(a′ ⊗ b′) = (−1)∂b∂a
′
aa′ ⊗ bb′

Notice that A⊗̂B is just the ordinary A⊗ B as a vector spaces, so dim(A⊗̂B) =
dim(A) dim(B).

Example 1.7. Define the Graded Quaternion Algebra A = (a,bF ) to be the
algebra generated by {1, i, j, k} satisfying the relations

i2 = a, j2 = b, k2 = −ab

ik = −ki = aj, kj = −kj = bi

where k = ij. For an arbitrary quaternion x = α+βi+γj+ δk, denote the conjugate
of x by x = α− (βi+ γj + δk), consider the quadratic form over A given by

N(x) = xx

So (A,N) is a quadratic space, with orthogonal basis {1, i, j, k}.

To make A into a graded algebra, consider A0 = F · 1⊕F ·k and A1 = F · i⊕F · j

Example 1.8. Consider the algebra Mr(A) of r × r matrices with coefficients in A,
where A is a graded algebra. Define the grading in Mr(A) by setting

M̂r(A)0 =

A0 A1

A1 A0

. . .

, M̂r(A)1 =

A1 A0

A0 A1

. . .


And we have the following graded algebra isomorphism

M̂r(A) ∼= M̂r(F )⊗̂A

M̂r(F )⊗̂M̂s(A) ∼= M̂rs(A)

2 Construction of Clifford Algebras

In this section (V, q) will denote a general quadratic space

Definition 2.1. Let A be an F -algebra and f : V → A a injective linear map. (A, f)
is said compatible with q if f(x)2 = q(x) · 1 for any x ∈ V .
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We shall identify V as a subspace of A and F · 1 with F , so the above equation
becomes x2 = q(x). Notice that if B denotes the bilinear form on V associated with
q, we get the equation

2B(x, y) = q(x+ y)− q(x)− q(y) = (x+ y)2 − x2 − y2 = xy + yx

So, we have that x and y are orthogonal in V iff xy = −yx.

Lemma 2.2. For A as above, and x ∈ V non-zero, x is invertible in A iff x is an
isotropic vector in V .

Proof. Suppose that xy = 1 for y ∈ A. Then q(x)y = x2y = x, so q(x) 6= 0 since
x 6= 0. Conversely, set y = x/q(x), then xy = x2/q(x) = 1.

Definition 2.3. Let (V, q) a quadratic space, a Clifford Algebra associated to
(V, q) is a F algebra C together with a linear map i : V → C satisfying the condition
(i(v))2 = q(v) · 1 for all v ∈ V , and so that has the following universal property:
For any F−algebra A and injective every linear map f : V → A such that (A, f)
is compatible with q, there is a unique F -algebra homomorphism f : C → A so that
f = f ◦ i.

If we see V as a subspace of both C and A, we must have that f(v) = v for any
v ∈ V . Notice that the universal property of C makes it unique up to isomorphism,
so it is left to prove that for any given quadratic space (V, q) there is such associated
Clifford Algebra.

Consider the tensor algebra T (V ) and let I(q) the two sided ideal of T (V ) gener-
ated by elements of the form

x⊗ x− q(x) · 1 ∈ T (V ), where x ∈ V

Define the quotient algebra C(V ) = T (V )/I(q), and the map i : V → C as the
composition of the maps

V
i1−→ T (V )

π−→ C(V )

where π denotes the quotient map. Observe that is not clear that i is an injection
of V into C(V ), but we will prove this fact later, first we are going to show some
examples

Example 2.4. Let V = 〈a〉 be the one-dimensional space with quadratic form q(x) =
a with basis {x}. In this case we may identify the algebra T (V ) with the polynomial
ring F [x] and I(q) the ideal generated by x2−a. Thus, C(V ) is the quotient F [x]/(x2−
a). So {1, x} is a basis for C(V ) and any element can be written in the form α+ βx,
where α, β ∈ F . The multiplication is given by

(α1 + β1x)(α2 + β2x) = (α1α2 + aβ1β2) + (α1β2 + α2β1)x
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Example 2.5. Let V be a 2-dimensional quadratic space with diagonalization 〈a, b〉,
relative to the orthogonal basis {x, y}, let A the graded quaternion algebra (a,bF ) de-
fined in example 1.7. We may embed V into A by identifying x, y with i, j respectively.
Then

(αx+ βy)2 = (αi+ βj)2 = α2a+ β2b = q(αx+ βy)

so A is compatible with (V, q), moreover, A satisfies the universal property for the
Clifford algebra associated to (V, q); therefore,

C(V, q) ∼= A

Example 2.6. Denote by H = 〈1,−1〉 the hyperbolic space, the above example shows
that C(H) ∼= ( 1,−1

F ), and consider the map ϕ : ( 1,−1
F ) → M2(F ) given by ϕ(i) =(

0 1
−1 0

)
, ϕ(j) =

(
0 1
1 0

)
, ϕ(k) =

(
1 0
0 −1

)
This map is an algebra isomorphism;

moreover, under this map, the image of F ⊕F ·k correspond to the matrices

(
? 0
0 ?

)
,

and the image of F · i ⊕ F · j correspond to the matrices

(
0 ?
? 0

)
. So ϕ is a graded

algebra isomorphism and thus C(H) ∼= M̂2(F ).

For any Clifford Algebra C(V ), we have a canonical automorphism α, defined
using the next proposition

Proposition 2.7. Every Clifford Algebra C(V ) has a unique automorphism α :
C(V )→ C(V ) satisfying the properties

α ◦ α = id and α(i(v)) = −i(v)

Proof. Consider the linear map α0 : V → C(V ) defined by α0(v) = −i(v). Since
(C(V ), α0) is compatible with q, we have an algebra homomorphism α : C(V )→ C(V )
such that α ◦ i = α0. This implies that for any x ∈ i(V ), we have that α(x) = −x;
furthermore, every x ∈ C(V ) can be written as x = x1 · · ·xm with xi ∈ (V ), so
α ◦ α(x) = x.

Define Ci(V ) = {x ∈ C(V )|α(x) = (−1)ix}, for i = 0, 1, we have that C(V ) =
C0(V )⊕C1(V ) and CiCj ⊆ Ci+j (the subscript here is taken modulo 2) so C(V ) has
a structure of graded algebra. Observe that C0(V ) is the image of

⊕
T i(V ) (i even)

under the quotient map π : T (V )→ C(V ); similarly C1(V ) is the image of
⊕
T i(V )

(i odd).

Remark: Observe that C0(V ) is a subalgebra of C(V ), whereas C1(V ) is not.

We shall compute the dimension of C(V ), first we need the following result

Lemma 2.8. If (V, q) and (V ′, q′) are quadratic spaces, there exist a surjection

f : C(V ⊕ V ′)→ C(V )⊗̂C(V ′)
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Proof. Consider the map φ : V ⊕V ′ → C(V )⊗̂C(V ′) given by φ(x, x′) = x⊗1+1⊗x′.
Clearly, ker(φ) = {(0, 0)}, so φ is an injective linear map. Furthermore,

φ(x, x)2 = (x⊗ 1 + 1⊗ x′)2 =

x2 ⊗ 1 + 1⊗ x′2 + (x⊗ 1)(1⊗ x′) + (1⊗ x′)(x⊗ 1) =

x2 ⊗ 1 + 1⊗ x′2 + (x⊗ x′) + (−1)(x⊗ x′) = q(x) + q′(x′) = (q ⊕ q′)(x, x′)

So by the universal property of the Clifford Algebra, we have an unique algebra
homomorphism

f : C(V ⊕ V )→ C(V )⊗̂C(V ′)

which coincides with φ on V ⊕ V ′. Observe that f is surjective, since the elements
of the form x ⊗ 1, 1 ⊗ x′ (x ∈ V, x′ ∈ V ′) lies in the image of f and C(V )⊗̂C(V ′) is
generated as F -algebra by this elements.

Now we can prove the main result.

Theorem 2.9. If (V, q) is a n-dimensional quadratic space, then dimC(V ) = 2n. In
particular, if {x1, . . . , xn} is an orthogonal basis for (V, q), then {xe11 · · ·xenn : ei =
0, 1} constitutes a basis for C(V ).

Proof. Let {x1, . . . , xn} be an orthogonal basis on V . Observe that for i 6= j, xixj =
−xjxi since 0 = 2B(xi, xj) = xixj + xjxi, so the equations xixj = −xjxi and
x2i = q(xi) holds in C(V ). Thus, as an F space, C(V ) is spanned by the products of
the form xe11 · · ·xenn , ei = 0, 1; therefore, dimC(V ) ≤ 2n.

We are going to prove the reverse inequality by induction and using the previous
lemma. For n = 1, see example 2.4. For n > 1, take any orthogonal basis {x1, . . . , xn}
for V , and set U = span(x1) and U ′ = span(x2, . . . xn). Since V = U ⊕ U ′, C(V ) =
C(U ⊕ U ′) which maps surjectively onto C(U)⊗̂C(U ′); thus

dim(C(V )) ≥ dim(C(U)) dim(C(U ′))

By the induction hypothesis, dim(C(U ′)) = 2n−1 and example 2.4 implies dim(C(U)) =
2. So we have dim(C(V )) ≥ 2n completing the proof.

Consider the m-fold orthogonal sum mH = H ⊕ · · · ⊕ H, then using example 2.6
we have C(mH) ∼= M̂2n(F ). Any quadratic space that is isometric to mH for some
m ∈ N is called Hyperbolic Space.

3 Introduction to Witt Rings and Brauer Group

Let M be a commutative cancellation monoid, define ∼ on M ×M by

(x, y) ∼ (x′, y′)⇔ x+ y′ = x′ + y

The cancellation law in M implies that ∼ is an equivalence relation on M×M . Define
the Grothendieck group of M to be G(M) = (M×M)/ ∼. So G(M) is a group and
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the map i : M → G(M) given by i(x) = [(x, 0)] is an injection. Since the inverse of
[(x, y)] is [(y, x)], we have that [(x, y)] = i(x)− i(y) can be identified with x− y ∈M .
Any monoid homomorphism h : M → G where G is an abelian group, can be extended
uniquely to a group homomorphism H : G(M)→ G by H(x, y) = h(x)−h(y). Lastly,
if M has a commutative multiplication, then it induces a commutative multiplication
on G(M) which makes it into a ring.

(x, y)(x′, y′) = (xx′ + yy′, yx′ + xy′)

We may apply this construction to quadratic forms. Consider M(F ) the set of
all isometry classes of quadratic forms over the field F , the binary operations ⊥ and
⊗ define the structure of a semi commutative ring on M(F ). By Witt’s cancellation
theorem, the operation ⊥ makes M(F ) into a cancellation monoid.

Definition 3.1. The group Ŵ (F ) = G(M(F )) is called the Witt-Grothendieck
ring of quadratic forms over the field F .

Consider the dimension map dim : M(F ) → Z, this extends uniquely to a ring

homomorphism Ŵ (F ) → Z. The kernel of this homomorphism, denoted by ÎF is

called the fundamental ideal of Ŵ (F ).

Definition 3.2. Consider the ideal that consist of all hyperbolic spaces and their
additive inverses in Ŵ (F ), namely Z · H. The factor ring W (F ) = Ŵ (F )/Z ·H is
called the Witt ring of F .

The image of the ideal ÎF under the natural projection Ŵ (F )→W (F ) is denoted
by IF , this is called the fundamental ideal of W (F ).

Proposition 3.3.

• ÎF is additevly generated by the expressions 〈a〉 − 〈1〉, where a 6= 0.

• ÎF ∼= IF .

• A form q represents an element in IF iff dim q is even.

• IF is generated by the forms 〈1,−a〉, a ∈ F ∗.

• IF/I2F ∼= F ∗/(F ∗)2 where F ∗ is the multiplicative group F \ {0}.

• I2F consist of classes of even-dimensional forms q for which d(q) = (−1)n(n−1)/2

where dim(q) = n.

Now we shall construct other algebraic object associated to F , it is called The
Brauer Group. In the following, any F -algebra will always mean a finite dimensional
F -algebra. For any subset S of an F -algebra A we shall write

CA(S) = {a ∈ A : as = sa for all s ∈ S}
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which is called the centralizer of S in A, this is a subalgebra of A; for the special
case S = A, we use the notation CA(A) = Z(A) called the center of A.

Definition 3.4. A is called F -central if Z(A) = F · 1, A is called simple if A has
no two-sided ideals other than (0) and A. If A satisfies both conditions, it is called
cental simple algebra (CSA) over A.

The basic examples of CSA over a field F are Mn(F ) and the four dimensional
quaternion algebra (a,bF ) where a, b 6= 0 ∈ F .

Theorem 3.5. Let A,B F -algebras and A′ ⊆ A, B′ ⊆ B. Then

CA⊗B(A′ ⊗B′) = CA(A′)⊗ CB(B′)

In particular, if A,B are both CSA over F , so is A⊗B.

Let A,A′ both be CSAs over F . We say that A is similar to A′ if there exist finite-
dimensional vector spaces V, V ′ such that A⊗EndV ∼= A′ ⊗EndV ′. For instance, if
A = F and A′ = Mn(F ), take V = Fn and V ′ = (0), then F is similar to Mn(F ).

Proposition 3.6. The relation of similarity defined above is an equivalence relation.

Proof. The reflexivity and symmetry are immediate by definition. To show that
it has the transitive property, we need to use the fact that (EndV ) ⊗ (EndV ′) ∼=
End(V ⊗ V ′).

The equivalence class of A will be denoted by [A], and we have that the operation

[A] · [B] = [A⊗B]

is well defined and makes the set of similarity classes of CSAs into a commutative
monoid with [F ] = [Mn(F )]. We denote this monoid by B(F ).

Denote by Aop = {aop : a ∈ A} the opposite algebra of A, where (aop ·bop = (ba)op.
Clearly, if A is CSA, so is Aop. Now define θ : A⊗Aop → End(A) by setting

θ(a⊗ bop)(c) = acb

θ is an algebra homomorphism and it is injective since (A ⊗ Aop) is a CSA. So θ is
an isomorphism by counting dimensions. Now we are allowed to give the following
definition.

Definition 3.7. The Brauer Group B(F ) of F is the set of similar equivalence
classes of CSAs over F . In particular B(F ) is an abelian group.

A characterization of this group can be realized using the Wedderburn Theorem.

Theorem 3.8 (Wedderburn Theorem). Every central simple algebra A over F is
of the form Mn(D), where D is a central division algebra over F , and D is uniquely
determined up to isomorphism.
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Proof.

Thus we can conclude

Corollary 3.9. The elements in the Brauer Group B(F ) are in 1−1 correspondence
with the isomorphism classes of F -central division algebras.

Proof. Let A be a CSA over F , by Wedderburn Theorem,

A ∼= Mn(D) ∼= Mn(F )⊗D

where D is a division CSA; therefore, [A] = [D] in B(F ).

4 Properties of Quaternion Algebras

The Quaternion algebras introduced barely in example 1.7 play a vital role in quadratic
form theory; in this section we present important properties of these 4-dimensional
forms that will be useful for our purposes in the next sections.

Proposition 4.1. 1. The quaternion algebra (a,bF ) is either a Division algebra or
isomorphic to the algebra M2(F ).

2. (a,bF ) is a division algebra if and only if for any element q ∈ (a,bF ), N(q) = 0 ⇒
q = 0.

3. (a,bF ) and (a
′,b′

F ) are isomorphic as F -algebras if and only if they are isometric
as quadratic spaces.

4. For a, b, c, d ∈ F ∗ we have

(
a, b

F
)⊗ (

a, c

F
) ∼= (

a, bc

F
)⊗ (

c,−a2c
F

)

Proof.

1. By the Wedderburn Theorem, (a,bF ) ∼= Mn(D) for some division central algebra
D. So

4 = dim(
a, b

F
) = dim(Mn(D)) = n2 dim(D)

Then we have either n = 1 or n = 2. if n = 1, then dimD = 4 and so D ∼= (a,bF ).
If n = 2, dimD = 1 and so D ∼= F .

2. This is a consequence of lemma 2.1.

3. It is immediate that any isomorphism of algebras induces an isomorphism of
quadratic spaces. For the converse, observe that any isometry is an isomorphism
over the three dimensional subalgebra generated by {i, j, k}. Thus by the Witt’s
Cancellation Theorem, we get the result.
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4. Let {1, i, j, k} and {1, i′, j′, k′} basis for A = (a,bF ) and B = (a,cF ) respectively.

Consider the algebra spanned by

X = F · (1⊗ 1) + F · (i⊗ 1) + F · (j ⊗ j′) + F · (k ⊗ j′)
= F · 1 + F · I + F · J + F · IJ

Where I = i ⊗ 1, J = j ⊗ j′ and IJ = k ⊗ j′. This is a four dimensional
subalgebra of A⊗B, and we have that

I2 = i2 ⊗ 1 = a, J2 = j2 ⊗ j′2 = bc,

IJ = ij ⊗ j′ = −ji⊗ j′ = −JI

So this subalgebra is isomorphic to (a,bcF ). Now consider the algebra spanned
by

Y = F · (1⊗ 1) + F · (1⊗ j′) + F · (i⊗ k′) + F · (−ci⊗ i′)
= F · 1 + F · Ĩ + F · J̃ + F · Ĩ J̃

This is a four dimensional subalgebra of A⊗B, and we have that

Ĩ2 = 1⊗ j′2 = c, J̃2 = i2 ⊗ k′2 = −a2c,

ĨJ̃ = i⊗ j′k′ = i⊗−k′j′ = −J̃ Ĩ

So this subalgebra is isomorphic to ( c,−a
2c

F ) Since each element of {I, J} com-

mutes with any element of {Ĩ , J̃}, elements of X commute with elements of Y
as well; so by counting dimensions we have

A⊗B ∼= X ⊗ Y ∼= (
a, bc

F
)⊗ (

c,−a2c
F

)

as desired.

Now we can state the following useful results for quaternion algebras as corollary

Corollary 4.2. For any a, b, x, y ∈ F ∗,

1. (a,bF ) ∼= (ax
2,by2

F )

2. (a,bF ) ∼= ( b,aF ).

3. (a,aF ) ∼= (a,−1F ).
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4. (a,−aF ) ∼= ( 1,a
F ) ∼= M2(F ).

5. If a 6= 1, (a,1−aF ) ∼= M2(F ).

6. (a,bF )⊗ (a,xF ) ∼= (a,bxF )⊗M2(F ).

Now we introduce another notion on quaternion algebras and field extensions.

Definition 4.3. Let F ⊆ L a field extension and A quaternion algebra over F . We
say that F is split over L if A ⊗F L is isomorphic to a matrix algebra over F . We
just say that A is split if it is split over F .

The following is immediate from the previous results

• if a+ b = 1 then (a,bF ) is split.

• (a,bF )⊗ ( c,dF ) is split if and only if (a,bF ) ∼= ( c,dF ).

5 Real Periodicity and Clifford Modules

Let F any field, let ϕp,q denote the form p〈−1〉 ⊥ q〈1〉. We shall write Cp,q =
C(V, ϕp,q) with the convention C0,0 = F .

Proposition 5.1. There is a graded algebra isomorphism

Cp+n,q+n ∼= M̂2n(Cp,q)

Proof. Observe that ϕp+n,q+n ∼= ϕp,q ⊥ ϕn,n, thus by lemma 2.8

Cp+n,q+n ∼= Cp,q ⊗̂ Cn,n ∼= Cp,q ⊗̂ M̂2n(F ) ∼= M̂2n(Cp,q)

So, we only need to calculate Cp,0 and C0,q. By the following proposition we get
a second reduction

Proposition 5.2 (Periodicity 8). Cp+8,q ∼= M̂16(Cp,q) ∼= Cp,q+8.

Proof. Consider first p = q = 0, observe that C0,4 ∼= C4,0.

C8,0 ∼= C4,0⊗̂C4,0 ∼= C4,0⊗̂C0,4 ∼= C4,4 ∼= M̂16(F )

This implies
Cp+8,q ∼= Cp,q⊗̂C8,0 ∼= Cp,q⊗̂M̂16(F ) ∼= M̂16(Cp,q)

Similarly, C0,8 ∼= M̂2n(Cp,q).
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So we only need to know Cp,0 and C0,q for 0 ≤ p, q ≤ 7. These are computed
in terms of X = C1,0 ∼= F (

√
−1), Y = C2,0 ∼= (−1,−1F )Z = C0,1 ∼= F (

√
1),W =

C0,2 ∼= ( 1,1
F ). The other Clifford Algebras are easily computed and can be found in

the following chart

n 0 1 2 3 4 5 6 7

Cn,0 F X Y Y ⊗ Z Y ⊗W M̂2(X ⊗W ) M̂4(W ) M̂8(Z)

C0,n F Z W X ⊗W Y ⊗W M̂(Y ⊗ Z) M̂4(Y ) M̂8(X)

• Since C3,0 ∼= C2,0⊗̂C1,0 ∼= C2,0 ⊗ C0,1 ∼= Y ⊗ Z.

• Similarly, C4,0 ∼= C2,0 ⊗ C0,2 ∼= Y ⊗W
C0,3 ∼= C0,2 ⊗ C1,0 ∼= W ⊗X
C0,3 ∼= C0,2 ⊗ C2,0 ∼= W ⊗ Y

• Finally, for p = 1, 2, 3 we have

Cp+4,0 ∼= Cp,0⊗̂C4,0 ∼= Cp,0⊗̂C0,4 ∼= Cp,4 ∼= M̂2p(C0,4−p)

by 5.1.

• The three remaining Clifford Algebras C0,5, C0,6 and C0,7 are computed simi-
larly.

6 Steinberg Symbols and Milnor’s Group k2F

In algebraic K-theory, a series of K-groups denoted by KnR is associated to any ring
R. For a ring R, let K0R be the Grothendieck group of finitely generated projective
modules over R, and K1R be the Bass-Whithead group R. if R is a field F , can be
proved that K0F ∼= Z and K1F ∼= F ∗, these may be taken to be the definitions for
the first two K-groups of the field F . In particular, if we define kn := KnF/2KnF ,
then by lemma 3.3

k0F ∼= Z2
∼= W (F )/IF, k1F ∼= F ∗/(F ∗)2 ∼= IF/I2F

So it would be natural to ask if the next filtration factor I2F/I3F of the Witt ring is
can be also described from the viewpoint of the algebraic K-theory of fields.

We shall define the group K2F following Milnor’s idea and show that I2F/I3F is
isomorphic to the group of k2F .

Definition 6.1. A pairing f : F ∗ × F ∗ → G into a multiplicative abelian group F
is said to be a Steinberg Symbol if f is bimultiplicatibe and f(a, b) = 1 whenever
a+ b = 1, this property will be referred to as the Steinberg property.

In view of the universal property of the tensor prodcut F ∗⊗F ∗, we can construct
a universal Steinberg Symbol as the quotient

F ∗ ⊗ F ∗/〈a⊗ b : a+ b = 1〉
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which is defined to be K2F . The natural pairing ϕ : F ∗ × F ∗ → K2F is a Steinberg
symbol with the universal property that for any Steinberg symbol f : F ∗ → F ∗ → G
exist an unique group homomorphism g : K2F → G such that f = g ◦ ϕ.

Write [a, b] for the image of a ⊗ b in K2F . We have the following properties in
K2F .

Proposition 6.2.

1. If a+ b = 0 then [a, b] = 1.

2. [a, b] = [b, a]−1.

3. [a, a] = [a,−1] and has order ≤ 2.

4. If a+ b 6= 0, then [a.b] = [a+ b,−b/a].

Proof. 1. We may assume that a 6= 1, so 1− a−1 6= 0. Using

1 = [a−1, 1− a−1] = [a, 1− a−1]−1

we have
[a,−a] = [a,−a][a, 1− a−1] = [a,−a+ 1] = 1

2. From (1) we get

1 = [ab,−ab] = [a,−a][a, b][b, a][b,−b] = [a, b][b, a]

3. Observe that
1 = [a,−a] = [a, a][a,−1]

so [a,−1] = [a.a][a,−1]2 = [a, a][a, 1] = [a, a].

4. Letting c = a+ b 6= 0, we have ac−1 + bc−1 = 1. So

1 = [ac−1, bc−1] = [a, b][c, b]−1[a, c]−1[c, c]

implies
[a, b] = [c, b][a, c][c,−1] = [c, b][c, a−1][c,−1] = [c,−b/a]

Recall that k2F = K2F/(K2F )2, we shall write again [a, b] for the image of [a, b]
in k2. Additionally, we have the following immediate properties in k2 as consequence
of proposition 6.2

• For any a, b, c ∈ F ∗, [ac2, b] = [a, bc2] = [a, b].

• For any a, b ∈ F ∗, [a, b] = [b, a]

Lemma 6.3. The following relations are true in k2(F )
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1. [a, x2 − ay2] = 0 for all a ∈ F , x, y ∈ F ∗ satisfying x2 − ay2 6= 0.

2. [a, b] = [ab, ab(a+ b)] for all a, b ∈ F ∗ satisfying a+ b 6= 0.

Proof. 1. If x = 0 the result follows immediately from the previous remark. If
x 6= 0 consider the relations

0 = [a(yx−1)2, 1− a(yx−1)2] = [a, x2 − ay2]

2. Since (a+ b)2 = a(a+ b) + b(a+ b) by (1)

[a(a+ b), b(a+ b)] = [a, b] + [a+ b, ab(a+ b)]

Proposition 6.4. Let 2B(F ) := {x ∈ B(F ) : x2 = 1} where B(F ) is the Brauer
Group of F . Then

(a, b) 7→ (
a, b

F
) ∈ 2B(F )

is a Steinberg symbol . This symbol is induced by an unique group homomorphism
β : k2F → 2B(F ) given by

β[a, b] = (
a, b

F
)

Proof. First we have to prove that the map is indeed well-defined. By corollary 4.2

(
a, b

F
)⊗ (

a, b

F
) ∼= (

a, b2

F
)⊗M2(F ) ∼= (

a, 1

F
)⊗M2(F )

∼= M2(F )⊗M2(F ) ∼= M4(F )

Therefore [(a,bF )]2 = 1. The bi-multiplicative property in a, b follows again from

corollary 4.2. Observe that β(a,1−aF ) ∼= M2(F ) and hence [(a,1−aF )] = 1. So β induces
a Steinberg symbol as desired.

Proposition 6.5. Recall that W (F ) denotes the classes of anisotropic quadratic
forms over F and I(F ) the ideal generated by the forms 〈1,−a〉. The map

(a, b) 7→ 〈1,−a〉〈1,−b〉+ I3F

is a Steinberg symbol into I2F/I3F . This symbol is induced by an unique group
homomorphism α : k2F → I2F/I3F given by

α[a, b] = 〈1,−a〉〈1,−b〉+ I3F

Proof. First we shall prove that the map is well defined. If a+ b = 1, then

〈1,−a〉〈1,−b〉 ∼= (
a, b

F
) ∼= M2(F ) = 0 ∈W (F ).
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So we just have to prove that it is bimultiplicative. In fact,

〈1,−a〉〈1,−b〉+ 〈1,−a′〉〈1,−b〉 = 〈1,−a,−b, ab〉+ 〈1,−a′,−b, a′b〉
= 〈1,−a,−b, ab, 1,−a′,−b, a′b〉
= 〈1,−a, 1,−a′〉〈1,−b〉
= (〈1,−a, 1,−a′〉+ 〈aa′,−aa′〉)〈1,−b〉 (〈aa′,−aa〉 = M2(F ) = 0 ∈W (F )]

= 〈1,−a,−a′, aa′, 1,−aa′〉〈1,−b〉
= (〈1,−a〉〈1,−a′〉+ 〈1,−aa′〉)〈1,−b〉
≡ 〈1,−aa′〉〈1,−b〉(mod I3F )

Now we want to relate the groups 2B(W ) and I2F/I3F .
Since I2F is generated by the forms 〈1,−a〉〈1,−b〉, we define a homomorphism γ from
I2 into 2B(W ) by

〈1,−a〉〈1,−b〉 7→ (
a, b

F
)

that is well defined using a similar argument that in proof of proposition 6.4. We
have as immediate properties:

• γ(I3F ) = 1.

• γ(I2F ) = Quat(F ), where Quat(F ) is the subgroup of 2B(F ) generated by all
quaternion algebras over F .

The second conclusion just follow from the definition of γ. For the first statement,
recall that I3F is additively generated by elements of the form

q = 〈1,−a〉〈1,−b〉〈1,−c〉
= 〈1,−a,−b, ab〉〈1,−c〉
= 〈1,−a,−b, ab,−c, ac, cb,−abc〉
= 〈1,−a,−b, ab〉 − 〈c,−ac,−bc, abc〉
= 〈1,−a〉〈1,−b〉 − c2〈1,−a〉〈1,−b〉

Applying γ and using that (a,bF ) = ( c
2a,c2b
F ) we get γ(q) = 1.

Therefore, we can see γ as a homomorphism γ : I2F/I3F → 2B(F ), and combin-
ing with propositions 6.4 and 6.5 we have a commutative diagram

k2F

I2F/I3F 2B(F )

�
��+
α Q

QQs
β

-γ
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In this connection, we have that α, β, γ are indeed isomorphism. We shall present some
remarks for the proof of this fact based on Milnor and Merkurjev theorems. First,
Milnor [1970] proved that α is an isomorphism; then the next major project was to
deal with β and γ when finally in [1981] Merkurjev proved that β is an isomorphism.

Theorem 6.6 (Milnor, 1970). The map α is an isomorphism

Proof. The idea is construct an inverse for α, following Milnor, we define the Stiefel-
Whitney class of a quadratic form q = 〈a1, . . . , an〉 to be

w(q) =
∏
i<j

[ai, aj ] ∈ k2F

• w(q) is an invariant of the quadratic form, that is, it depends only on the isom-
etry class of q.

Let q1, q2 isometric quadratic forms, that is q1 = 〈a1, . . . , an〉 ∼= q2 = 〈b1, . . . b2〉.
We assert that there are two indexes i, j such that 〈ai, aj〉 ∼= 〈bi, bj〉 and ak = bk
whenever k 6= i, j. We write then q1 ∼ q2.

By induction on n: Suppose n ≤ 3 (there is nothing to prove for n = 1, 2). Let
f = 〈c1, . . . , cn〉 such that b1 = c1e

2
1 + · · · cpe2p, and p is the smallest possible

and f ∼ q1. This such f exists by the Well-Ordering Principle. We claim that
p = 1, suppose the contrary; by the minimality of p, no subsum can be equal to
zero, so consider d = c1e

2
1 + c2e

2
2. Then 〈c1, c2〉 ∼= 〈d, c1c2d〉 implies

q1 ∼ f = 〈c1, c2, . . . , cn〉
∼= 〈d1, c1c2d, . . . , cn〉
∼= 〈d, c3, . . . , cn, c1c2d〉

and b1 = d + c3e
2
3 + · · · cpe2p which is a contradiction with the minimality of

p. Thus p = 1 and hence 〈c1〉 ∼= 〈b1〉 and so q1 ∼= 〈b1, c2, . . . , cn〉. By Witt’s
Cancellation Theorem,

〈c2, . . . , cn〉 ∼= 〈b2, . . . bn〉

By the induction hypothesis, we get 〈c2, . . . , cn〉 ∼ 〈b2, . . . bn〉. Finally we get

q1 ∼ 〈c1, c2 . . . , cn〉 ∼= 〈b1, c2 . . . , cn〉 ∼ 〈b1, b2 . . . , bn〉 = q2

• This latter proof shows that the invariance of w(q) depends only in the case of
binary forms; that is, if 〈a, b〉 ∼= 〈c, d〉 then [a, b] = [c, d].

This can be shown as follows; write c = ax2 + by2, where x, y ∈ F . If y = 0,
then c = ax2, and the determinants of the quadratic form implies that d = bz2

for some z ∈ F ∗, since

ab = cd mod(F ∗)2 ⇒ ab = ax2d(w2)⇒ d = bz2
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Thus [c, d] = [ax2, bz2] = [a, b]. Now if both x, y 6= 0, then we have by ...

[a, b] = [ax2, by2] = [ax2 + by2,−by2/ax2] = [c,−ab(y/ax)2]

= [c,−ab] = [c,−cd] = [c, d]

• Observe that w(q1 ⊥ q2) = w(q1)(q2)[d(q1), d(q2)] since

w(q1 ⊥ q2) = w(〈a1, . . . , an, b1, . . . , bn〉) =
∏
i<j

[ai, aj ]
∏
i,j

[bi, bj ]

n∏
i,j=1

[ai, b, j]

= w(q1)w(q2)[d(q1)n, d(q2)n] = w(q1)w(q2)[d(q1), d(q2)]

• If we take q1, q2 ∈ IF 2, then d(qi) = (−1)mi for mi = (dim qi)/2, so

w(q1 ⊥ q2) = w(q1)w(q2)[−1,−1]m1m2

So in order to make w multiplicative and eliminate the error altogether, we
define a signed Stiefel-Whitney Class. For any form of dimension n = 2m
consider

w±(q) = w(q)[−1,−1]m(m−1)/2 =

{
w(q) if n ≡ 0, 2 mod 8

w(q)[−1, 1] if n ≡ 4, 6 mod 8

• w± gives a well-defined group homomorphism from I2F to k2F .

w±(q1)w±(q2) = w(q1)w(q2)[−1,−1]m1(m1−1)/2[−1,−1]m2(m2−1)/2

= w(q1)w(q2)[−1,−1]m1m2 [−1,−1](2m1m2+m1(m1−1)+m2(m2−1))/2

= w(q1 ⊥ q2)[−1,−1](m1+m2)(m1+m2−1)/2

= w±(q1 ⊥ q2)

• w±(〈1, a〉〈1, b〉) = [−a,−b] ∈ k2F .

Since 〈1, a〉〈1, b〉 = 〈1, a, b, ab〉. Thus

w±(〈1, a〉〈1, b〉) = [1, a][1, b][1, ab][a, b][a, ab][b, ab][−1,−1]

= [1, ab]2[a, b][ab, ab][−1,−1]

= [a, b][ab,−1][−1,−1]

= [a, b][a,−1][b,−1][−1,−1]

= [a, b][a,−1][−b,−1]

= [a,−b][−b,−b]
= [−ab,−b]
= [−a,−b][b,−b] = [−a,−b]
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• w±(I3F ) = 1
For any 4 dimensional form q = 〈a1, a2, a3, a4 which d(q) = 1, and any c ∈ F ∗
we have that

w(〈c〉q) = [ca1, ca2][ca1, ca3][ca1, ca4][ca2, ca3][ca2, ca3][ca3, ca4]

= [ca1, a2][ca1, a3][ca1, a4][ca2, a3][ca2, a3][ca3, a4]

= [c, d(q)][a1, a2][a1, a3][a1, a4][a2, a3][a2, a4][a3, a4]

= [a1, a2][a1, a3][a1, a4][a2, a3][a2, a4][a3, a4]

= w(q)

Therefore, for elements in IF 3 we have

w±(〈1, a〉〈1, b〉〈1, c〉) = w±(〈1, a〉〈1, b〉 ⊥ 〈c〉〈1, a〉〈1, b〉)
= w±(〈1, a〉〈1, b〉)w±(〈1, a〉〈1, b〉)
= 1

In conclusion, w± : I2F/I3F → k2F defines a group homomorphism and checking
generators, w± is an inverse to α.

Now we focus in proving that the homomorphism β : k2(F ) → 2B(F ) is an
isomorphism.
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Theorem 6.7 (Merkurjev, 1981). The map β is an isomorphism

Proof. We prove that the map is injective and surjective.

• Conic Curves in Quaternion Algebras: In a quaternion algebra Q, consider
the maps T : Q → Q and N : Q → Q given by T (a) = a + a and N(a) = aa.
Every element a ∈ Q satisfies

a2 − T (a)a+N(a) = 0

Set VQ := Ker(T ) is a 3-dimensional subspace of Q. Note that for any x ∈ VQ,
x2 = −N(x) and the map ϕQ(x) = x2 is a quadratic form over VQ.

The quadric CQ of the quadratic form ϕQ in the projective plane is a smooth

curve. Since Q = (a,bF ), VQ = Fi⊕ Fj ⊕ Fk and CQ is given by the equation

at21 + bt22 − abt23

Consider the function field F (C) the generic splitting field of the equation of
CQ, then Q is split over F (C).

• The following conditions are equivalent

1. Q is split

2. CQ is isomorphic to the projective line P1.

3. CQ has a rational point.

And thus follows,

1. Every divisor of CQ of degree zero is principal

2. If Q is a division algebra, the degree of every closed point is even.

• Recall that a closed point refer to a discrete valuation ring of F (C), and a
divisor of CQ is an element of the free abelian group generated by the set of
closed points, denote this set by div(C). For any D ∈ div(C) we have

D =
∑
p

ordp(D)p

where the sum is over all the closed points and ordp(D) are integers all zero
except for a finite number. The degree of D is defined by the formula

deg(D) =
∑
p

ordp(D)dp

where dp is the degree of the residue field F (C)p over F (C).
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• The residue homomorphism: For every closed point x ∈ C, there is a homomor-
phism

∂x : K2(F (C))→ K1(F (x)) = F (x)∗

induced by the discrete valuation of the local ring OC,x. Moreover, we have a
exact sequence

K2(F )→ K2(F (C))
∂−→
∐
x∈C

F (x)∗ → F ∗

• Fix a closed point x0 ∈ C and for any n ∈ Z, let Ln be the subspace

Ln = {f ∈ F (C)∗|div(f) + nx0 ≥ 0} ∪ {0}

Since any zero divisor is principal, for every point x ∈ C of degree 2n, we can
choose a function fx ∈ L∗ satisfying div(fx) = x− nx0.

• Restriction homomorphism: Let L/F a field extension, then the field ho-
momorphism inclusion F → L induces a restriction ring homomorphism

rL/F : K2(F )→ K2(L)

taking a symbol [a1, a2]F to the symbol [a1, a2]L. The image of rL/F (α) is de-
noted by αL for an element α ∈ K2(F ).

In particular, If L/F is a quadratic field extension, then

Kn(L) = rL/F (Kn−1(F )) ·K1(L)

for n = 1, 2.

• Norm homomorphism: Let L/F be a finite field extension, the standard
norm homomorphism L∗ → F ∗ can be viewed as a homomorphism K1(L) →
K1(F ).

Suppose that the extension L/F is simple, we identify L with the residue
field F (y) for a closed point y. Let α ∈ K2(L) = K2(F (y)), then there is a
β ∈ K3(F (P1) satisfying ∂x(β) = α if x = y and ∂x(β) = 0 otherwise. Let v
be the discrete valuation of the field F (P1) associated with the infinite point of
the projective line. Set cL/F (α) = ∂v(β).

In the general case, choose a sequence of simple field extensions

F = F0 ⊆ F1 ⊆ · · · ⊆ Fn = L

and define
cL/F = cF1/F0

◦ cF2/F1
◦ · · · ◦ cFn/Fn−1
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• Hilbert Theorem 90 for K2. Let L/F be a Galois quadratic extension and
σ the generator of Gal(L/F ). Then the sequence

K2(L)
1−σ−−−→ K2(L)

cL/F−−−→ K2(F )

is exact.

• Let L/F a quadratic extension. Then the sequence

k2(F )
rL/F−−−→ k2(L)

cL/F−−−→ k2(F )

is exact.

Consider u ∈ K2(L) satisfying cL/F (u) = 2v for some v ∈ K1(F ). Then

cL/F (u− vL) = 2v − 2v = 0

and by Hilbert Theorem 90, we have that u−vL = (1−σ)w for some w ∈ K2(L).
Hence,

u = vL + (1− σ)w = (v + cL/F (w))L − 2σw

• Let p be a prime integer, a field F is called p-special if the degree of every finite
field extension of F is a power of p. A p-special field has the following property

Let L/F be a finite field extension, then there is a tower of field extensions

F = F0 ⊆ F1 ⊆ · · · ⊆ Fn = L

satisfying [Fi+1 : Fi] = p for all i = 0, . . . , n− 1.

• β is injective.

Consider u ∈ K2(F ) a sum of n symbols, such that β(u+ 2K2(F )) = 1. We are
going to show by induction that u ∈ 2K2(F ).

For n = 1, u = [a, b], since β[a, b] = (a,bF ) is isotropic, there is x, y ∈ F such that
b = x2 − ay2, so from 6.3 [a, b] ∈ K2(F ).

For n = 2, u = [a, b] + [c, d], since β(u+ 2K2(F )) = 1, then (a,bF )⊗ ( c,dF ) is split,

which is equivalent to (a,bF ) ∼= ( c,dF ). By Corollary 4.2 we may assume that a = c
and hence u = [a, bd], so the statement follows from the case n = 1.

Suppose now that u = [a, b] + v where v ∈ K2(F ) is the sum of n− 1 symbols.
We may assume that [a, b] /∈ 2K2(F ), so the algebra Q = (a,bF ) is not split. Let
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C be the corresponding conic curve and L = F (C). The conic is given by the
equation

at21 + bt22 = abt23

Set x = t1/t3 and y = t2/t3, so the above equation becomes

b−1x2 + a−1y2 = 1

Thus in K2(L) is true

0 = [b−1x2, a−1y2] = 2[x, a−1y2]− 2[b, y]− [a, b]

Therefore [a.b] = 2r in K2(L) with r = [x, a−1y2]− [b, y]. Since the quaternion
algebra (a,bF ) is split over L, we have that βL(vL + 2K2(L)) = 1.

By induction hypothesis, vL = 2w for some w ∈ K2(L). Set cx = ∂x(w) for
every x ∈ C. Since

c2x = ∂x(2w) = ∂x(vL) = 1

we have cx = (−1)nx for nx = 0 or 1, by the previous remarks, the degree of
every point of C is even so ∑

x∈C
nx deg(x) = 2m

for some m ∈ Z. As every degree zero divisor on C is principal, there is a
function f ∈ L∗ with

div(f) =
∑

nxx−mp

where p is a non trivial residue of the element r and ∂r(p) = −1.

Set w′ = w+[1, f ]+kr ∈ K2(L), where k = m+np. If x ∈ C is a point different
from p, then

∂x(w′) = ∂p(w)(−1)nx = 1

and
∂p(w

′) = ∂p(w)(−1)m(−1)k = (−1)np+m+k = 1

By the above exact sequence, we have that w′ = sL for some s ∈ K2(F ). Thus

vL = 2w = 2w′ − 2kr = 2sL − [ak, b]L

Set v′ = v − 2s + [ak, b] ∈ K2(F ); we have that v′L = 0. The conic C has a ra-
tional point over the quadratic extension E = F (

√
a). Since the field extension

E(C)/E is purely transcendental and v′E(C) and therefore 2v′ = 0.

Since v′ = 0 ∈ k2(F ), there is a d ∈ F ∗ such that v = [−1, d], hence v is the sum
of two symbols [ak, b] and [−1, d] modulo 2K2(F ). Therefore, we are reduced
to the case n = 2 that has already been considered.
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• β is surjective.

Let s ∈ 2Br(F ), by induction on the index of s, we prove that s ∈ Im(β). First
suppose that the field F is 2-special, by the previous remark, there is a quadratic
extension L/F with ind(sL) < ind(s). By induction hypothesis, sL = βL(u) for
some u ∈ k2(L). It is easy to notice that β ◦ cL/F = cL/F ◦ βL and therefore

β(cL/F (u)) = cL/F (βL(u)) = cL/F (sL) = 1

Since we already proved that β is injective, it follows that cL/F (u) = 0. So by
the above exact sequence, we have that u = vL for some v ∈ k2(F ). Therefore,

β(v)L = βL(vL) = βL(u) = sL

hence, s − β(v) splits over L and must be the class of a quaternion algebra.
Consequently, s− β(v) = β(w) for some w ∈ k2(F ). So s = β(v + w) ∈ Im(β).

In the general case, apply the proof to a maximal odd degree extension of F ,
and there exist an odd degree extension E/F such that sE = βE(v) for some
v ∈ k2(E). Finally we obtain

s = cE/F (sE) = cE/F (βE(v)) = β(cE/F (v))
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