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1 Introduction

Let X be a topological space, a continuous action of a topological group G over X
allow to study properties and invariants throughout symmetries of X; we want to
inherit to X an algebraic object that reflects both the topology and the group ac-
tion since the usual cohomology ring H*(X) does not consider the action. The ring
H*(X/G) is not a suitable candidate since in the orbit space X/G some pathologies
may appear if the action of G on X is not free. We might consider then the ring
H*(X/G) where X is some particular topological space which is homotopy equiva-
lent to X and G acts on it freely.

We are particularly interested in involutions of X, namely, a continuous map 7: X —
X such that 72 = id induces an action of the group G' = {id, 7} on X. Moreover, if
X is a complex manifold and 7 is the complex conjugation, some algebraic relations
between the rings H*(X) and H*(X /G) occur. This notion can be generalized under
suitable conditions over the cohomology rings leading to the concept of Conjugation
Space.

In section §2. we present the generalities of the Borel construction X /G and the G-
equivariant cohomology ring H* ()~( /G), the proofs of that section are not presented
and can be found in [3]. In section §3. is developed the theory of Conjugation Spaces,
main properties and examples are presented. Throughout all the document, H*(X)
will denote the singular cohomology ring H*(X; Zy) where Zy denotes the field of two
elements. For basic and introductory results on Algebraic Topology we will refer [1].

2 Spaces With Involution
Let X be a topological space. An involution on X is a continuous map 7: X — X

such that 72 = id. If we denote by G = {r,id} the cyclic group of order 2, an involu-
tion on X is equivalent to X being a GG-space, that is, a continuous action of G over X.



The fixed point subspace of X, X is defined by
XC={zeX: :7(x)=21}

So the complement of X in X is the subspace where the action of G is free.

Given two G-spaces X and Y, a G-map f : X — Y is a continuous function that
commutes with the involutions, namely forx =1y o f. Let f¢: Y% — X denote
the restriction of f to the fixed point subspaces. Two G-maps f1, fo are G-homotopic
if there exist a homotopy F' : X x I — Y connecting them such that for any x € X
and t € I, v F(x,t) = F(rx(z),1).

Remark 2.1. Suppose that X is a G-space which has a CW-complex structure
such that for each n, there is an action of G on the set of n-cells A,, and a G-
characteristic map 1, : A, x D™ — X. (Here the action of G on A,, x D is given by
T(A,z) = (7(A),z)). In this case we say that X is a G-CW-complex.

Observe that if X is a G-CW-complex then the quotient space X/G inherits a CW-
structure, with the set of n-cells equal to A, /G.

Example 2.2. The sphere S™ can be obtained from S”~! by adjunction of two n-cells
D" attached by the identity map on the boundary S"~!. Starting from S° = {1}
we have a CW-structure on S™ with two k-cells and whose k-skeleton is S*, for k < n.
This is also a G-CW-structure over S™ for the involution given by the antipodal map
x — —x. The quotient space S™/G is RP™ which inherits a CW-structure. This
construction also is applied for the inductive limits S>° and RP>°.

Definition 2.3. Let X be a space with involution 7. The Borel construction Xg
is the quotient space
Xg=85""%xg X =(S"xX)/~ (2.3.1)

where ~ is the equivalence relation (z,z) ~ (—z,7(z)).

If f: X — Y is a G-map, then the map id x f : S x X — 5§ x Y induces a
continuous map fg : Xg — Yg. Also, if X and Y have the same G-homotopy type,
then X and Y have the same homotopy type.

Example 2.4. Consider the constant map X — pt, since ptg = RP°, the induced
map p : Xg — RP™ is given by p([z,z]) = p(z), where p : S — RP> is the 2-fold
covering projection.

Example 2.5. Suppose that the involution on X is trivial, that is 7(x) = = for all

2 € X. Then we have a homeomorphism X¢ — RP> x X, induced by the continuous
maps p : Xg — RP* (from Example 2.4) and X — X (induced by the projection
S® x X — X).

Lemma 2.6. Let X be a space with involution T.

1. The mapp: Xg — RP™ is a locally trivial fiber bundle with fiber homeomorphic
to X.



2. if T has a fized point, then p admits a section. More precisely, each v € X
provides a section s, : RP* — Xg of p.

8. The quotient map S x X — X¢g is a 2-fold covering.

4. If X is a free G-space and Hausdorff, then morphism ¢* : H*(X/G) — H*(X¢)
(induced by the projection G-map q : S x X — X ) is an isomorphism of graded
algebras. Furhtermore, if X is a G-CW -complex, the map q is a homotopy
equivalence.

Moreover, we have the following consequence:

Corollary 2.7. Let X be a finite dimensional G-CW -complex. Then X has a fized
point if and only if the homomorphism p* : H*(RP*>) — H*(Xq) is injective.

Definition 2.8. Let X be a space with involution 7. The G-equivariant coho-
mology H/(X) is the cohomology algebra defined by

HL(X) = H* (Xg). (2.8.1)

Recall that H*(RP>) = Zz[u] is the polynomial ring where w is a variable in degree
1. (See [1, Theorem 3.19]). In particular, Hj(pt) = Za[u]. Observe that for any
G-space, the homomorphism p* : H*(RP*) — H{(X) gives H5(X) the structure of
a Zs[u]-algebra

Example 2.9. Suppose that the action of G on X is trivial, that is, X¢ = X. From
Example 2.5 we have that X¢ = RP* x X, so by the Kiinneth formula

HE(X) =~ Zo[u] ® H*(X) ~ H*(X)[u] (2.9.1)

Definition 2.10. Let X be a G-space, for any point z € S°°, we have a map 7, :
X — Xg given by i,(x) = [z, x]. Since S*° is path-connected, we have a well defined
homomorphism (independent of z)

p=it: Hy(X) — H*(X) (2.10.1)

We call p the forgetful homomorphism, and we say that X is equivariantly
formal if p is surjective.

Observe that p is functorial, that is, if f:Y — X is a G-map, the following diagram

H(X) -2 H*(X)

is commutative.



Consider the subalgebra of H*(X) given by
H*(X)Y ={a€ H*(X) : 7%(a) = a}. (2.10.2)
Let z € S, for any b € H},(X), we have that
"o p(b) =7 0if(b) = (i o7)"(b) =i (b) = p(b).

This shows that p(H% (X)) € H*(X)¢.
Proposition 2.11. Let X be a G-space with X¢ # 0. Suppose that H'(X) = 0 for
0 <i < r. Then there is a short ezact sequence:

0 — H"(RP™) 25 HE(X) 2 H™(X)C = 0. (2.11.1)

Remark 2.12. If X is equivariantly formal, for each k£ € N, we can choose a Zs-
linear map o : H*(X) — HE(X) such that po = id. This gives rise to an additive
section o : H*(X) — H%(X) of p . The Leray-Hirsch Theorem ([3, Theorem 4.1.17])
applied to the locally trivial fiber bundle X — X5 — RP* implies that the induced
map ¢ : H*(X)[u] - HE(X)is an isomorphism of Zs[u]-modules (but not in general
an isomorphism of rings). Therefore, for an equivariantly formal space, ker(p) is the
ideal generated by u.

Proposition 2.13. Consider the ideal of Hj(X)
Ann(u) = {z € H5(X) : ux = 0}.
The following conditions are equivalent:
1. X is equivariantly formal.
2. H:(X) is a free Zslu]-module.
3. Ann(u) = 0.

Let r: H%(X) — HZ(XY) be the homomorphism induced by the inclusion X¢ — X.
As a consequence of Proposition 2.13 we have the following result:

Corollary 2.14. Let X be a G-space and suppose that v : H:(X) — HE(XC) is
injective. Then X is equivariantly formal.

The converse of the above result is not true in general; for instance, consider X = S
together with the antipodal action. Since S°° is contractible, H*(S*°) ~ H*(pt) = Zo;
moreover, by Lemma 2.6, H5(S®) ~ H*(S*°/G) = H*(RP*>) = Zs[u]. Therefore,
the map p : H5(X) — H*(X) is surjective and thus X is equivariantly formal.
However, H%(XY) = H(0) = 0 implies that the map r : Hj(X) — HE5(XY) is not
injective.
Definition 2.15. For a G-space X, let

hE(X) = Zou,u™ ] @ HE(X) (2.15.1)

denote the localization of the cohomology algebra HE(X,Y).



Recall that Zs[u, u™'] is Z-graded with Zs[u, u™!]¥ = spany,_ (u*). Therefore, h},(X,Y")
is a Z-graded Za[u,u~!]-algebra with

he(X,Y)E = @ spany, (u') @ HL(X,Y)/ ~
i+j=k

where ~ is the equivalence relation generated by v'*! ® a ~ v’ ® ua.

Example 2.16. Suppose that X is a free finite dimensional G-CW-complex. By
Lemma 2.6, H:(X) ~ H*(X/G). Since X/G is a finite dimensional CW-complex,
HE(X) is a torsion Zs[u]-module. Therefore, the localization hf(X) = 0. On the
other hand, since the action is free, X¢ = () and thus h% (X ) = 0 as well. So in this
case there is a trivial isomorphism hj(X) ~ hig(X©).

The isomorphism presented in the previous example can be generalized under suitable
conditions, as the following theorem states.

Theorem 2.17 (Localization Theorem). Let X be a finite dimensional G-CW -
complex. Then the inclusion X¢ — X induces an isomorphism

he(X) = hi(X9)
of Z-graded Zo[u,u']-algebras.

The finite dimensional hypothesis is necessary in this theorem; for instance, if X = 5
with the antipodal involution, X¢ = ), but h¥,(X) = Za[u, u™1] since H% (X) = Zs[u].

As a consequence of the Localization Theorem we have

Corollary 2.18. Let X be a G-space and suppose that X is equivariantly formal.
Then the restriction homomorphism 1 : Hf(X) — HE(XC) is injective.

3 Conjugation Spaces

There are examples of G-spaces for which there exists a ring isomorphism  : H**(X) —
H*(X%), where H**(X) denotes the subalgebra of even degree elements in H*(X).
This isomorphism is part of an interesting structure on equivariant cohomology, which
generalizes these examples into the concept of a Conjugation Space. In this section
we develop this concept and present properties and examples for these spaces.

Definition 3.1. Let X be a G-space, p : H3*(X) — H?*(X) the forgetful homomor-
phism and r : H}(X) — HE(X®) the restriction homomorphism. A cohomology
frame for X is a pair (k, o) satisfying

o k: H?>*(X) — H*(X%) is an additive isomorphism dividing the degree in half.

o H*(X) — HZ(X) is an additive section of p.



e r, o satisfy the conjugation equation in the ring HE(XG); namely, for any
a€ H*™(X), m €N,
roo(a) = r(a)u™ + pp (3.1.1)
where p,, denotes some polynomial in HX(XY) ~ H*(XY)[u] of degree less
than m.

An involution 7 admitting a cohomology frame is called a conjugation. Additionally,
if H°%(X) = 0 then X together with an involution is a conjugation space.

Notice that the existence of o is equivalent to p being surjective and thus X is equiv-
ariantly formal (see Definition 1.9). We have the following examples of Conjugation
Spaces.

Example 3.2. Let D = D?" = {z € R?" : ||z|| < 1} and 7 the involution given
by T(x1,. ., Tpy Tygty .oy Ton) = (1, oy —Tn, Tpil,-..,To,). We have that D
is homeomorphic to a disc of dimension n and therefore there is a canonical ring
isomorphism x : H?>*(D) — H*(D%). On the other hand, since D is G-homotopic
to a point, Dg ~ RP*. Then the map p : H:(D) — H*(D) coincides with the
evaluation at v = 0 which is clearly surjective. Let o be an additive section of p;
for any a € H?™(D), the conjugation equation holds trivially if m > 0. In the case
m = 0, the equation r o o(a) = k(a) follows immediately by definitions of the maps
involved.

Example 3.3. Let D as in Example 3.2 and set ¥ = D/0D. The action of G over D
induces a well defined action over . Since ¥ is homeomorphic to the sphere S?" and
Y% to the sphere S™, there is a obvious isomorphism x : H?*(X) — H*(X%), namely,
sending the non-trivial element a € H?"(X) to the non trivial element b € H™(X%).
By Proposition 2.11 and as H?>*(X)% = H?*(X), the map p : H¥(X) — H*() is
surjective; in particular, this implies that X is equivariantly formal. Let o be a section
of p.

We only need to check that the conjugation equation holds for a € H**(X). As in
Example 2.9, we have that H2"(X) ~ (H*(X)[u])?", then

r(o(a)) = k(a)u™ (3.3.1)
follows from r being injective (Corollary 2.14).

Remark 3.4. Let X be a conjugation space. On H°(X), the map & coincides with
the restriction homomorphism 7 : H%(X) — H°(XY). Indeed, for any a € H°(X),
we have that x(a) = r oo (a) using the conjugation equation; on the other hand, there
is a commutative diagram

HY(X) ~—"— H°(X)

HY(XO) —+ HO(XE)

Thus we have k(a) =7 o o(a) = r(a).



In particular, the last remark implies that « and o are morphisms that preserve the
units of the rings.

Theorem 3.5 (Multiplicativity Theorem). Let X be a conjugation space, then k and
o are ring homomorphisms.

Proof. First we prove that o(ab) = o(a)o(b) for all a € H?*(X), b € H*(X) Let
m==Fk-+I.

Since p : H(X) — H°(X) is an isomorphism, the claim follows for m = 0. So we
may suppose that m > 0. Since o is a section of p, which is a ring homomorphism,
we have

plo(ab)) = ab, and p(o(a)o(b)) = p(o(a))p(o(b)) = ab (3.5.1)

Thus, o(ab) = o(a)o(b) mod ker p. Recall that H°%(X) = 0, and by Remark 2.12
we have a Z[u|-module isomorphism Hf(X) ~ H*(X)[u] and ker(p) = (u); therefore
it follows,

o(ab) = a(a)o(b) + o(dem_o)u? + - -+ + o(do)u®™ (3.5.2)
where d; € H'(X). We want to show that da,, o = -+ = dy = 0.

Applying the restriction homomorphism r to the previous equation, we obtain

k(ab)u™ + pr = k(a)E(D)u™ + pm + (H(d2m72)um71 —|—pm,1)u2 4 /{(do)uQW
= k(do)u*™ + pam,

By comparing the 2m-th terms, we get k(dg) = 0, and thus dyp = 0 by injectivity of
k. So we can rewrite the equation (3.5.2) as

K(ab)u™ + pm = K(d2)u*™ 1 + po 1 (3.5.3)

obtaining do = 0 as before. Following the process inductively, we get dop—o = -+ =
ds = dy = 0, proving that ¢ is a ring homomorphism.

To prove that x(ab) = r(a)k(b), using the conjugation equation (3.1.1) on both sides
of
ro(ab) = ro(a)ro(b),

we have
k(ab)u™ + pm = (k(a)u® + pp) (k(b)u! + py)
= k(a)k(D)u™ + ppm.
Therefore, k(ab) = k(a)k(b) by comparing degrees. O

As an immediate corollary, following Remark 2.12; we have



Corollary 3.6. The map ¢ : H*(X)[u] = H(X) induced by o, is an isomorphism
of Zs[u]-algebras. O

Corollary 3.7. Let X be a conjugation space, then the restriction homomorphism
r: HE(X) — HE(XC) ds injective.

Proof. Let = € ker(r). Since there is an isomorphism H¢(X) ~ H*(X)[u] induced by
o (Corollary 3.6), write

T = a(y)uk +pr € Hé"Jrk(X)

for some y € H?*"(X); without loss of generality, suppose that k is minimal. From
the conjugation equation we get

0=r(x) =r(o@)u" +pm) = K" + ppyr; (3.7.1)
therefore y = 0 since « is an isomorphism, and thus x = 0. O

Now we focus on the naturality of the cohomology frames, which follows in part form
the naturality given by the following diagrams.

Lemma 3.8. Let X and Y be conjugation spaces,

1. Let f: Y — X be a G-map, and f& : Y — XY the restriction to the fized
point subspaces. Then the following diagram

(f9)"[u]

H*(X)[u] H*(Y)[u]

Q
Q

* G (fg)* * G
He(X™) —— Hg(Y™)

is commutative, where (f&)*[u] is the polynomial extension of the map (f&)*.
2. Letrx andry be the restriction homomorphism for X andY respectively. Then

the following diagram
* X

HE(X) 2 H5(X0)
J(fc)* l(fg)*
)~ 15 (v)

18 commutative.

Now we can show the following result:



Proposition 3.9 (Naturality of Cohomology Frames). Let X and Y be conjugation
spaces with (kx,o0x) and (Ky,oy) the respective cohomology frames. The conjugation
space structure is natural, that is, the following diagrams are commutative:

H*(X) —> HE(X)

W rl E

H*(Y) —~ HE(Y)

oy

H*(X) —— H*(X%)

(2) f*l J(fc)*.

2% * G

HZ(Y) —~ HY(Y")
Proof. Fix k a natural number and let px and py be the respective forgetful homo-

morphism. Since f* o px = py o f&, for any a € H**(X) it follows,

py o fgoox(a) = f"opxoox(a)=[f"(a) = py ooy o [ (a) (3.9.1)

From the above equation, we get the commutativity of the diagram (1) modulo ker py .
As in the proof of Theorem 3.5, write

feox(a) = oy f*(a) + oy (dop—_2)u® + - - - + oy (do)u* (3.9.2)

for some d; € H'(Y). Applying 7y to both sides of this equation, by Lemma 3.8 we
get on the left hand side

ry (feox(a)) = (f§) (rxox(a))
= (f§)" (rx (a)u* + pi)
= (f§)" (rx(a))u* + pi
and for the right hand side we obtain,
ry (oy f*(a) + oy (dap—2)u® + - - - + oy (do)u") = Ky (do)u®* + poy,

Combining both sides we conclude that xy (dp) = 0 and then dy = 0 because of the
injectivity of xy. Therefore, the equation (3.8.2) can be rewritten as

ry (f&ox(a)) = ky (d2)u™ % + pay—s (3.9.3)

and as before, it follows dy = 0. We can continue this process to finally get
f&oox(a) =oy o f*(a). (3.9.4)

To prove the commutativity of the diagram (2), apply ry to both sides of equation
(3.8.4), and the conjugation equation and Lemma 3.8 imply

(f) (rx (@)u* + pe = Ky (f*(a)u* + pr; (3.9.5)



therefore, comparing the leading term u* and using that (f§)* = (f¢)*[u] we obtain
(F9)" 0 rix(a) = Ky o f*(a) (3.9.6)
O

Corollary 3.10 (Uniqueness of Cohomology Frames). Let (k,0) and (k',0") coho-
mology frames for an involution 7 on X. Then (k,0) = (k/,0").

Proof. Set Y = X and f = id on proposition 3.9, this gives kK = k' and 0 = o¢’. O
Recall that on a conjugation space X, ¢ induces an isomorphism
c: H*(X)[u] - H5(X)

(see Corollary 2.4). In fact, proposition 3.9 shows that this isomorphism is natural
and gives the following result analogous to Lemma 2.5.

Corollary 3.11. For any G-map f: Y — X between conjugation spaces, the diagram

H*(X)[u] —Z HE(X)

f*[U]\ \f&

[ep)

H'(Y)[u] ——~ Hg(Y)

is commutative, where f*[u] is the polynomial extension of the map f*.

Many examples of conjugation spaces are constructed by successively attaching of
cells homeomorphic to a disc in C", together with the complex conjugation. This
construction is analogous to the standard construction for CW-complexes, so in this
section we focus on presenting some tools for construction of conjugation complexes.

The examples 3.2 and 3.3 motivate the following definition:

Definition 3.12. A conjugation cell of dimension 2n is the closed unit disk D
in R?" with a linear involution 7 which has exactly n eigenvalues equal to —1. Notice
that D can be seen as the disc in C™ and 7 the complex conjugation. The space
¥ =D/0D is called a conjugation sphere of dimension 2n.

Let Y be a topological space with an involution 7 and D be a conjugation cell of
dimension 2k. Let  : S — Y be a G-map where S denotes the boundary of D. Then
the involutions on Y and D induces an involution on the quotient space

X=YU, D=YIUD/{y=0au):ueS} (3.12.1)

We say that X is obtained from Y by attaching a conjugation cell of dimension 2k.
Observe that the fixed point subspace X is obtained from Y& by attaching a k-cell
(in the standard sense of CW-complexes).
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More genereally, we can attach to Y a set A of 2k-conjugation cells, using a G-map

a:HS,\%Y.
AEA

As before, we have an involution over the resulting space X and the fixed point set
X is obtained from Y@ by attaching a collection of k-cells indexed by the same set
A.

Remark 3.13. The notion of G-spaces, G-equivariant cohomology and conjugation
spaces can be generalized to topological pairs (X,Y), where X is a G-space and Y
is a G-stable subspace of X. Such a G-pair together with a cohomology frame (k, o)
is called a Conjugation pair. The main fact about these conjugation pairs is that if
(X,Y) is a Conjugation pair and Y is a Conjugation space, then X is a Conjugation
space. (See Proposition 4.1 in [2].)

The main fact about the construction of attaching conjugation cells to a conjugation
space is the following:

Proposition 3.14. Let Y be a conjugation space and let X be obtained from Y by
attaching a collection of 2k-conjugation cells. Then X is a conjugation space.

Proof. Suppose that X is obtained from Y by attaching exactly one 2n-conjugation
cell D = Dy. According to Remark 3.13, We will show that (X,Y) is a conjugation
pair. Using excision, we have H*(X,Y) ~ H*(D, S) where S = D). As in example
3.3, one can show that there is a Cohomology frame (o, k) such that the equation

ra(oa(a)) = ra(a)u” (3.14.1)
holds, where a € H™(D, S) is the non-zero element.

For the general case, suppose that X is obtained from Y by attaching a set A of
2n-conjugation cells. Set D =[], Dx and S = [[ 5 0Dx. Then we have

H*(D,S) =[] H*(Dx,0D,) (3.14.2)
AEA

H(D, S) = [ H&(Da, 0Dy). (3.14.3)
A€A

Setting £ = [[yca #x, @ = [[ e, it follows as in the previous case that

for any a € H*"(X,Y) ~ H**(D,S) (by excision), where r = [],., 7a. Therefore
(X,Y) is a conjugation pair and so X is a conjugation space. O

To complete the construction of conjugation complexes, we need the following Lemma
(for details see Proposition 4.6 in [2]).
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Lemma 3.15 (Direct Limits). Let (X;, fi;) be a directed system of conjugation spaces
and G-equivariant inclusions, indexed by a directed set I. Suppose that each space X;
is Ty. Then X = lingi s a conjugation space. O

Definition 3.16. A space X is a conjugation complex if it is equipped with a
filtration

h=X,CXoCXiC--X =] Xk (3.16.1)
k=0
where X}, is obtained by attaching a collection of conjugation cells to Xj_; (indexed
by a set Ag(X). The topology on X is the direct limit topology.

By Proposition 3.14 and Lemma 3.15 it follows that a conjugation complex X is a
conjugation space.

Example 3.17. The complex projective spaces CP™ and the complex Grassmannian
Manifolds Gry (C™) together with the complex conjugation, are conjugation complexes
(and therefore conjugation spaces) for any 1 < n < co with the standard CW-complex
decomposition.
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