Conjugation Spaces Comprehensive Examination Part II

Sergio Chaves

May 2016

1 Introduction

Let X be a topological space, a continuous action of a topological group G over X allow to study properties and invariants throughout symmetries of X; we want to inherit to X an algebraic object that reflects both the topology and the group action since the usual cohomology ring $H^*(X)$ does not consider the action. The ring $H^*(X/G)$ is not a suitable candidate since in the orbit space X/G some pathologies may appear if the action of G on X is not free. We might consider then the ring $H^*(\tilde{X}/G)$ where \tilde{X} is some particular topological space which is homotopy equivalent to X and G acts on it freely.

We are particularly interested in involutions of X, namely, a continuous map $\tau : X \to X$ such that $\tau^2 = id$ induces an action of the group $G = \{id, \tau\}$ on X. Moreover, if X is a complex manifold and τ is the complex conjugation, some algebraic relations between the rings $H^*(X)$ and $H^*(\widetilde{X}/G)$ occur. This notion can be generalized under suitable conditions over the cohomology rings leading to the concept of **Conjugation Space**.

In section §2. we present the generalities of the Borel construction \widetilde{X}/G and the *G*equivariant cohomology ring $H^*(\widetilde{X}/G)$, the proofs of that section are not presented and can be found in [3]. In section §3. is developed the theory of Conjugation Spaces, main properties and examples are presented. Throughout all the document, $H^*(X)$ will denote the singular cohomology ring $H^*(X; \mathbb{Z}_2)$ where \mathbb{Z}_2 denotes the field of two elements. For basic and introductory results on Algebraic Topology we will refer [1].

2 Spaces With Involution

Let X be a topological space. An **involution** on X is a continuous map $\tau : X \to X$ such that $\tau^2 = id$. If we denote by $G = \{\tau, id\}$ the cyclic group of order 2, an involution on X is equivalent to X being a G-space, that is, a continuous action of G over X. The fixed point subspace of X, X^G is defined by

$$X^G = \{x \in X : \tau(x) = x\}$$

So the complement of X^G in X is the subspace where the action of G is free.

Given two *G*-spaces *X* and *Y*, a *G*-map $f : X \to Y$ is a continuous function that commutes with the involutions, namely $f \circ \tau_X = \tau_Y \circ f$. Let $f^G : Y^G \to X^G$ denote the restriction of *f* to the fixed point subspaces. Two *G*-maps f_1, f_2 are *G*-homotopic if there exist a homotopy $F : X \times I \to Y$ connecting them such that for any $x \in X$ and $t \in I$, $\tau_Y F(x,t) = F(\tau_X(x),t)$.

Remark 2.1. Suppose that X is a G-space which has a CW-complex structure such that for each n, there is an action of G on the set of n-cells Λ_n , and a Gcharacteristic map $\psi_n : \Lambda_n \times D^n \to X$. (Here the action of G on $\Lambda_n \times D$ is given by $\tau(\lambda, x) = (\tau(\lambda), x)$). In this case we say that X is a G-CW-complex.

Observe that if X is a G-CW-complex then the quotient space X/G inherits a CW-structure, with the set of *n*-cells equal to Λ_n/G .

Example 2.2. The sphere S^n can be obtained from S^{n-1} by adjunction of two *n*-cells D^n attached by the identity map on the boundary S^{n-1} . Starting from $S^0 = \{\pm 1\}$ we have a *CW*-structure on S^n with two *k*-cells and whose *k*-skeleton is S^k , for $k \leq n$. This is also a *G*-*CW*-structure over S^n for the involution given by the antipodal map $x \mapsto -x$. The quotient space S^n/G is $\mathbb{R}P^n$ which inherits a *CW*-structure. This construction also is applied for the inductive limits S^{∞} and $\mathbb{R}P^{\infty}$.

Definition 2.3. Let X be a space with involution τ . The Borel construction X_G is the quotient space

$$X_G = S^{\infty} \times_G X = (S^{\infty} \times X) / \sim \tag{2.3.1}$$

where \sim is the equivalence relation $(z, x) \sim (-z, \tau(x))$.

If $f: X \to Y$ is a *G*-map, then the map $id \times f: S^{\infty} \times X \to S^{\infty} \times Y$ induces a continuous map $f_G: X_G \to Y_G$. Also, if X and Y have the same *G*-homotopy type, then X_G and Y_G have the same homotopy type.

Example 2.4. Consider the constant map $X \to pt$, since $pt_G = \mathbb{R}P^{\infty}$, the induced map $p: X_G \to \mathbb{R}P^{\infty}$ is given by $p([z, x]) = \hat{p}(z)$, where $\hat{p}: S^{\infty} \to \mathbb{R}P^{\infty}$ is the 2-fold covering projection.

Example 2.5. Suppose that the involution on X is trivial, that is $\tau(x) = x$ for all $x \in X$. Then we have a homeomorphism $X_G \xrightarrow{\approx} \mathbb{R}P^{\infty} \times X$, induced by the continuous maps $p: X_G \to \mathbb{R}P^{\infty}$ (from Example 2.4) and $X_G \to X$ (induced by the projection $S^{\infty} \times X \to X$).

Lemma 2.6. Let X be a space with involution τ .

1. The map $p: X_G \to \mathbb{R}P^{\infty}$ is a locally trivial fiber bundle with fiber homeomorphic to X.

- 2. if τ has a fixed point, then p admits a section. More precisely, each $v \in X^G$ provides a section $s_v : \mathbb{R}P^{\infty} \to X_G$ of p.
- 3. The quotient map $S^{\infty} \times X \to X_G$ is a 2-fold covering.
- 4. If X is a free G-space and Hausdorff, then morphism $q^* : H^*(X/G) \to H^*(X_G)$ (induced by the projection G-map $\tilde{q} : S^{\infty} \times X \to X$) is an isomorphism of graded algebras. Furthermore, if X is a G-CW-complex, the map q is a homotopy equivalence.

Moreover, we have the following consequence:

Corollary 2.7. Let X be a finite dimensional G-CW-complex. Then X has a fixed point if and only if the homomorphism $p^* : H^*(\mathbb{R}P^\infty) \to H^*(X_G)$ is injective.

Definition 2.8. Let X be a space with involution τ . The G-equivariant cohomology $H^*_G(X)$ is the cohomology algebra defined by

$$H_G^*(X) = H^*(X_G). (2.8.1)$$

Recall that $H^*(\mathbb{R}P^{\infty}) \approx \mathbb{Z}_2[u]$ is the polynomial ring where u is a variable in degree 1. (See [1, Theorem 3.19]). In particular, $H^*_G(pt) = \mathbb{Z}_2[u]$. Observe that for any G-space, the homomorphism $p^* : H^*(\mathbb{R}P^*) \to H^*_G(X)$ gives $H^*_G(X)$ the structure of a $\mathbb{Z}_2[u]$ -algebra

Example 2.9. Suppose that the action of G on X is trivial, that is, $X^G = X$. From Example 2.5 we have that $X_G = \mathbb{R}P^{\infty} \times X$, so by the Künneth formula

$$H^*_G(X) \approx \mathbb{Z}_2[u] \otimes H^*(X) \approx H^*(X)[u]$$
(2.9.1)

Definition 2.10. Let X be a G-space, for any point $z \in S^{\infty}$, we have a map $i_z : X \to X_G$ given by $i_z(x) = [z, x]$. Since S^{∞} is path-connected, we have a well defined homomorphism (independent of z)

$$\rho = i_z^* : H_G^*(X) \to H^*(X) \tag{2.10.1}$$

We call ρ the **forgetful homomorphism**, and we say that X is **equivariantly** formal if ρ is surjective.

Observe that ρ is functorial, that is, if $f: Y \to X$ is a G-map, the following diagram

$$\begin{array}{c|c} H^*_G(X) & \stackrel{\rho_X}{\longrightarrow} & H^*(X) \\ f^*_G & & & & & \\ f^*_G(Y) & \stackrel{\rho_Y}{\longrightarrow} & H^*(Y) \end{array}$$

is commutative.

Consider the subalgebra of $H^*(X)$ given by

$$H^*(X)^G = \{ a \in H^*(X) : \tau^*(a) = a \}.$$
(2.10.2)

Let $z \in S^{\infty}$, for any $b \in H^*_G(X)$, we have that

$$\tau^* \circ \rho(b) = \tau^* \circ i_z^*(b) = (i_z \circ \tau)^*(b) = i_{-z}^*(b) = \rho(b).$$

This shows that $\rho(H^*_G(X)) \subseteq H^*(X)^G$.

Proposition 2.11. Let X be a G-space with $X^G \neq \emptyset$. Suppose that $\widetilde{H}^i(X) = 0$ for $0 \leq i < r$. Then there is a short exact sequence:

$$0 \to H^r(\mathbb{R}P^\infty) \xrightarrow{p^*} H^r_G(X) \xrightarrow{\rho} H^r(X)^G \to 0.$$
 (2.11.1)

Remark 2.12. If X is equivariantly formal, for each $k \in \mathbb{N}$, we can choose a \mathbb{Z}_2 linear map $\sigma : H^k(X) \to H^k_G(X)$ such that $\rho\sigma = id$. This gives rise to an additive section $\sigma : H^*(X) \to H^*_G(X)$ of ρ . The Leray–Hirsch Theorem ([3, Theorem 4.1.17]) applied to the locally trivial fiber bundle $X \to X_G \to \mathbb{R}P^{\infty}$ implies that the induced map $\tilde{\sigma} : H^*(X)[u] \to H^*_G(X)$ is an isomorphism of $\mathbb{Z}_2[u]$ -modules (but not in general an isomorphism of rings). Therefore, for an equivariantly formal space, ker(ρ) is the ideal generated by u.

Proposition 2.13. Consider the ideal of $H^*_G(X)$

$$Ann(u) = \{ x \in H^*_C(X) : ux = 0 \}.$$

The following conditions are equivalent:

- 1. X is equivariantly formal.
- 2. $H^*_G(X)$ is a free $\mathbb{Z}_2[u]$ -module.
- 3. Ann(u) = 0.

Let $r: H^*_G(X) \to H^*_G(X^G)$ be the homomorphism induced by the inclusion $X^G \hookrightarrow X$. As a consequence of Proposition 2.13 we have the following result:

Corollary 2.14. Let X be a G-space and suppose that $r : H^*_G(X) \to H^*_G(X^G)$ is injective. Then X is equivariantly formal.

The converse of the above result is not true in general; for instance, consider $X = S^{\infty}$ together with the antipodal action. Since S^{∞} is contractible, $H^*(S^{\infty}) \approx H^*(pt) = \mathbb{Z}_2$; moreover, by Lemma 2.6, $H^*_G(S^{\infty}) \approx H^*(S^{\infty}/G) = H^*(\mathbb{R}P^{\infty}) = \mathbb{Z}_2[u]$. Therefore, the map $\rho : H^*_G(X) \to H^*(X)$ is surjective and thus X is equivariantly formal. However, $H^*_G(X^G) = H^*_G(\emptyset) = 0$ implies that the map $r : H^*_G(X) \to H^*_G(X^G)$ is not injective.

Definition 2.15. For a G-space X, let

$$h_G^*(X) = \mathbb{Z}_2[u, u^{-1}] \otimes H_G^*(X)$$
(2.15.1)

denote the **localization** of the cohomology algebra $H^*_G(X, Y)$.

Recall that $\mathbb{Z}_2[u, u^{-1}]$ is \mathbb{Z} -graded with $\mathbb{Z}_2[u, u^{-1}]^k = \operatorname{span}_{\mathbb{Z}_2}(u^k)$. Therefore, $h_G^*(X, Y)$ is a \mathbb{Z} -graded $\mathbb{Z}_2[u, u^{-1}]$ -algebra with

$$h_G^*(X,Y)^k = \bigoplus_{i+j=k} \operatorname{span}_{\mathbb{Z}_2}(u^i) \otimes H_G^j(X,Y) / \sim$$

where \sim is the equivalence relation generated by $u^{i+1} \otimes a \sim u^i \otimes ua$.

Example 2.16. Suppose that X is a free finite dimensional G-CW-complex. By Lemma 2.6, $H_G^*(X) \approx H^*(X/G)$. Since X/G is a finite dimensional CW-complex, $H_G^*(X)$ is a torsion $\mathbb{Z}_2[u]$ -module. Therefore, the localization $h_G^*(X) = 0$. On the other hand, since the action is free, $X^G = \emptyset$ and thus $h_G^*(X^G) = 0$ as well. So in this case there is a trivial isomorphism $h_G^*(X) \approx h_G^*(X^G)$.

The isomorphism presented in the previous example can be generalized under suitable conditions, as the following theorem states.

Theorem 2.17 (Localization Theorem). Let X be a finite dimensional G-CWcomplex. Then the inclusion $X^G \hookrightarrow X$ induces an isomorphism

$$h^*_G(X) \xrightarrow{\approx} h^*_G(X^G)$$

of \mathbb{Z} -graded $\mathbb{Z}_2[u, u^{-1}]$ -algebras.

The finite dimensional hypothesis is necessary in this theorem; for instance, if $X = S^{\infty}$ with the antipodal involution, $X^G = \emptyset$, but $h^*_G(X) = \mathbb{Z}_2[u, u^{-1}]$ since $H^*_G(X) = \mathbb{Z}_2[u]$.

As a consequence of the Localization Theorem we have

Corollary 2.18. Let X be a G-space and suppose that X is equivariantly formal. Then the restriction homomorphism $r: H^*_G(X) \to H^*_G(X^G)$ is injective.

3 Conjugation Spaces

There are examples of G-spaces for which there exists a ring isomorphism $\kappa : H^{2*}(X) \to H^*(X^G)$, where $H^{2*}(X)$ denotes the subalgebra of even degree elements in $H^*(X)$. This isomorphism is part of an interesting structure on equivariant cohomology, which generalizes these examples into the concept of a *Conjugation Space*. In this section we develop this concept and present properties and examples for these spaces.

Definition 3.1. Let X be a G-space, $\rho: H^{2*}_G(X) \to H^{2*}(X)$ the forgetful homomorphism and $r: H^*_G(X) \to H^*_G(X^G)$ the restriction homomorphism. A **cohomology** frame for X is a pair (κ, σ) satisfying

- $\kappa: H^{2*}(X) \to H^*(X^G)$ is an additive isomorphism dividing the degree in half.
- $\sigma: H^{2*}(X) \to H^{2*}_G(X)$ is an additive section of ρ .

• κ, σ satisfy the **conjugation equation** in the ring $H^*_G(X^G)$; namely, for any $a \in H^{2m}(X), m \in \mathbb{N}$,

$$r \circ \sigma(a) = \kappa(a)u^m + p_m \tag{3.1.1}$$

where p_m denotes *some* polynomial in $H^*_G(X^G) \approx H^*(X^G)[u]$ of degree less than m.

An involution τ admitting a cohomology frame is called a **conjugation**. Additionally, if $H^{odd}(X) = 0$ then X together with an involution is a **conjugation space**.

Notice that the existence of σ is equivalent to ρ being surjective and thus X is *equivariantly formal* (see Definition 1.9). We have the following examples of Conjugation Spaces.

Example 3.2. Let $D = D^{2n} = \{x \in \mathbb{R}^{2n} : ||x|| \leq 1\}$ and τ the involution given by $\tau(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{2n}) = (-x_1, \ldots, -x_n, x_{n+1}, \ldots, x_{2n})$. We have that D^G is homeomorphic to a disc of dimension n and therefore there is a canonical ring isomorphism $\kappa : H^{2*}(D) \to H^*(D^G)$. On the other hand, since D is G-homotopic to a point, $D_G \approx \mathbb{R}P^{\infty}$. Then the map $\rho : H^*_G(D) \to H^*(D)$ coincides with the evaluation at u = 0 which is clearly surjective. Let σ be an additive section of ρ ; for any $a \in H^{2m}(D)$, the conjugation equation holds trivially if m > 0. In the case m = 0, the equation $r \circ \sigma(a) = \kappa(a)$ follows immediately by definitions of the maps involved.

Example 3.3. Let D as in Example 3.2 and set $\Sigma = D/\partial D$. The action of G over D induces a well defined action over Σ . Since Σ is homeomorphic to the sphere S^{2n} and Σ^G to the sphere S^n , there is a obvious isomorphism $\kappa : H^{2*}(\Sigma) \to H^*(\Sigma^G)$, namely, sending the non-trivial element $a \in H^{2n}(\Sigma)$ to the non trivial element $b \in H^n(\Sigma^G)$. By Proposition 2.11 and as $H^{2n}(\Sigma)^G = H^{2n}(\Sigma)$, the map $\rho : H^{2n}_G(\Sigma) \to H^{2n}(\Sigma)$ is surjective; in particular, this implies that Σ is equivariantly formal. Let σ be a section of ρ .

We only need to check that the conjugation equation holds for $a \in H^{2n}(\Sigma)$. As in Example 2.9, we have that $H^{2n}_G(\Sigma^G) \approx (H^*(\Sigma^G)[u])^{2n}$, then

$$r(\sigma(a)) = \kappa(a)u^n \tag{3.3.1}$$

follows from r being injective (Corollary 2.14).

Remark 3.4. Let X be a conjugation space. On $H^0(X)$, the map κ coincides with the restriction homomorphism $\tilde{r}: H^0(X) \to H^0(X^G)$. Indeed, for any $a \in H^0(X)$, we have that $\kappa(a) = r \circ \sigma(a)$ using the conjugation equation; on the other hand, there is a commutative diagram

Thus we have $\kappa(a) = r \circ \sigma(a) = \tilde{r}(a)$.

In particular, the last remark implies that κ and σ are morphisms that preserve the units of the rings.

Theorem 3.5 (Multiplicativity Theorem). Let X be a conjugation space, then κ and σ are ring homomorphisms.

Proof. First we prove that $\sigma(ab) = \sigma(a)\sigma(b)$ for all $a \in H^{2k}(X)$, $b \in H^{2l}(X)$ Let m = k + l.

Since $\rho : H^0_G(X) \to H^0(X)$ is an isomorphism, the claim follows for m = 0. So we may suppose that m > 0. Since σ is a section of ρ , which is a ring homomorphism, we have

$$\rho(\sigma(ab)) = ab, \text{ and } \rho(\sigma(a)\sigma(b)) = \rho(\sigma(a))\rho(\sigma(b)) = ab$$
(3.5.1)

Thus, $\sigma(ab) = \sigma(a)\sigma(b) \mod \ker \rho$. Recall that $H^{odd}(X) = 0$, and by Remark 2.12 we have a $\mathbb{Z}[u]$ -module isomorphism $H^*_G(X) \approx H^*(X)[u]$ and $\ker(\rho) = \langle u \rangle$; therefore it follows,

$$\sigma(ab) = \sigma(a)\sigma(b) + \sigma(d_{2m-2})u^2 + \dots + \sigma(d_0)u^{2m}$$
(3.5.2)

where $d_i \in H^i(X)$. We want to show that $d_{2m-2} = \cdots = d_0 = 0$.

Applying the restriction homomorphism r to the previous equation, we obtain

$$\kappa(ab)u^m + \widetilde{p_m} = k(a)k(b)u^m + p_m + (\kappa(d_{2m-2})u^{m-1} + p_{m-1})u^2 + \dots + \kappa(d_0)u^{2m}$$
$$= \kappa(d_0)u^{2m} + p_{2m}$$

By comparing the 2*m*-th terms, we get $\kappa(d_0) = 0$, and thus $d_0 = 0$ by injectivity of κ . So we can rewrite the equation (3.5.2) as

$$\kappa(ab)u^m + \widetilde{p_m} = \kappa(d_2)u^{2m-1} + p_{2m-1} \tag{3.5.3}$$

obtaining $d_2 = 0$ as before. Following the process inductively, we get $d_{2m-2} = \cdots = d_2 = d_0 = 0$, proving that σ is a ring homomorphism.

To prove that $\kappa(ab) = \kappa(a)\kappa(b)$, using the conjugation equation (3.1.1) on both sides of

$$r\sigma(ab) = r\sigma(a)r\sigma(b)$$

we have

$$\kappa(ab)u^m + p_m = (\kappa(a)u^k + p_k)(\kappa(b)u^l + p_l)$$
$$= \kappa(a)\kappa(b)u^m + \widetilde{p_m}.$$

Therefore, $\kappa(ab) = \kappa(a)\kappa(b)$ by comparing degrees.

As an immediate corollary, following Remark 2.12, we have

Corollary 3.6. The map $\tilde{\sigma} : H^*(X)[u] \to H^*_G(X)$ induced by σ , is an isomorphism of $\mathbb{Z}_2[u]$ -algebras.

Corollary 3.7. Let X be a conjugation space, then the restriction homomorphism $r: H^*_G(X) \to H^*_G(X^G)$ is injective.

Proof. Let $x \in \ker(r)$. Since there is an isomorphism $H^*_G(X) \approx H^*(X)[u]$ induced by σ (Corollary 3.6), write

$$x = \sigma(y)u^k + p_k \in H_G^{2n+k}(X)$$

for some $y \in H^{2n}(X)$; without loss of generality, suppose that k is minimal. From the conjugation equation we get

$$0 = r(x) = r(\sigma(y)u^{k} + p_{m}) = \kappa(y)u^{n+k} + p_{n+k}; \qquad (3.7.1)$$

therefore y = 0 since κ is an isomorphism, and thus x = 0.

Now we focus on the naturality of the cohomology frames, which follows in part form the naturality given by the following diagrams.

Lemma 3.8. Let X and Y be conjugation spaces,

1. Let $f: Y \to X$ be a G-map, and $f^G: Y^G \to X^G$ the restriction to the fixed point subspaces. Then the following diagram

is commutative, where $(f^G)^*[u]$ is the polynomial extension of the map $(f^G)^*$.

2. Let r_X and r_Y be the restriction homomorphism for X and Y respectively. Then the following diagram

$$\begin{array}{ccc} H^*_G(X) & \stackrel{r_X}{\longrightarrow} & H^*_G(X^G) \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

is commutative.

Now we can show the following result:

Proposition 3.9 (Naturality of Cohomology Frames). Let X and Y be conjugation spaces with (κ_X, σ_X) and (κ_Y, σ_Y) the respective cohomology frames. The conjugation space structure is natural, that is, the following diagrams are commutative:

$$H^{2*}(X) \xrightarrow{\sigma_X} H^{2*}_G(X)$$

$$(1) \quad f^* \downarrow \qquad \qquad \downarrow f^*_G$$

$$H^{2*}(Y) \xrightarrow{\sigma_Y} H^{2*}_G(Y)$$

$$H^{2*}(X) \xrightarrow{\kappa_X} H^*(X^G)$$

$$(2) \quad f^* \downarrow \qquad \qquad \downarrow (f^G)^*$$

$$H^{2*}(Y) \xrightarrow{\kappa_Y} H^*(Y^G)$$

Proof. Fix k a natural number and let ρ_X and ρ_Y be the respective forgetful homomorphism. Since $f^* \circ \rho_X = \rho_Y \circ f_G^*$, for any $a \in H^{2k}(X)$ it follows,

$$\rho_Y \circ f_G^* \circ \sigma_X(a) = f^* \circ \rho_X \circ \sigma_X(a) = f^*(a) = \rho_Y \circ \sigma_Y \circ f^*(a)$$
(3.9.1)

From the above equation, we get the commutativity of the diagram (1) modulo ker ρ_Y . As in the proof of Theorem 3.5, write

$$f_G^* \sigma_X(a) = \sigma_Y f^*(a) + \sigma_Y(d_{2k-2})u^2 + \dots + \sigma_Y(d_0)u^{2k}$$
(3.9.2)

for some $d_i \in H^i(Y)$. Applying r_Y to both sides of this equation, by Lemma 3.8 we get on the left hand side

$$r_Y(f_G^*\sigma_X(a)) = (f_G^G)^*(r_X\sigma_X(a))$$
$$= (f_G^G)^*(\kappa_X(a)u^k + p_k)$$
$$= (f_G^G)^*(\kappa_X(a))u^k + \widetilde{p_k}$$

and for the right hand side we obtain,

$$r_Y(\sigma_Y f^*(a) + \sigma_Y(d_{2k-2})u^2 + \dots + \sigma_Y(d_0)u^{2k}) = \kappa_Y(d_0)u^{2k} + p_{2k}$$

Combining both sides we conclude that $\kappa_Y(d_0) = 0$ and then $d_0 = 0$ because of the injectivity of κ_Y . Therefore, the equation (3.8.2) can be rewritten as

$$r_Y(f_G^*\sigma_X(a)) = \kappa_Y(d_2)u^{2k-2} + p_{2k-2}$$
(3.9.3)

and as before, it follows $d_2 = 0$. We can continue this process to finally get

$$f_G^* \circ \sigma_X(a) = \sigma_Y \circ f^*(a). \tag{3.9.4}$$

To prove the commutativity of the diagram (2), apply r_Y to both sides of equation (3.8.4), and the conjugation equation and Lemma 3.8 imply

$$(f^G)^*(\kappa_X(a))u^k + p_k = \kappa_Y(f^*(a))u^k + \tilde{p}_k;$$
(3.9.5)

therefore, comparing the leading term u^k and using that $(f_G^G)^* = (f^G)^*[u]$ we obtain

$$(f^G)^* \circ \kappa_X(a) = \kappa_Y \circ f^*(a) \tag{3.9.6}$$

Corollary 3.10 (Uniqueness of Cohomology Frames). Let (κ, σ) and (κ', σ') cohomology frames for an involution τ on X. Then $(\kappa, \sigma) = (\kappa', \sigma')$.

Proof. Set Y = X and f = id on proposition 3.9, this gives $\kappa = \kappa'$ and $\sigma = \sigma'$. \Box

Recall that on a conjugation space X, σ induces an isomorphism

$$\widetilde{\sigma}: H^*(X)[u] \to H^*_G(X)$$

(see Corollary 2.4). In fact, proposition 3.9 shows that this isomorphism is natural and gives the following result analogous to Lemma 2.5.

Corollary 3.11. For any G-map $f: Y \to X$ between conjugation spaces, the diagram

$$\begin{array}{c} H^{*}(X)[u] \xrightarrow{\widetilde{\sigma}_{x}} H^{*}_{G}(X) \\ f^{*}[u] \\ H^{*}(Y)[u] \xrightarrow{\widetilde{\sigma}_{y}} H^{*}_{G}(Y) \end{array}$$

is commutative, where $f^*[u]$ is the polynomial extension of the map f^* .

Many examples of conjugation spaces are constructed by successively attaching of cells homeomorphic to a disc in \mathbb{C}^n , together with the complex conjugation. This construction is analogous to the standard construction for *CW*-complexes, so in this section we focus on presenting some tools for construction of conjugation complexes.

The examples 3.2 and 3.3 motivate the following definition:

Definition 3.12. A conjugation cell of dimension 2n is the closed unit disk D in \mathbb{R}^{2n} with a linear involution τ which has exactly n eigenvalues equal to -1. Notice that D can be seen as the disc in \mathbb{C}^n and τ the complex conjugation. The space $\Sigma = D/\partial D$ is called a conjugation sphere of dimension 2n.

Let Y be a topological space with an involution τ and D be a conjugation cell of dimension 2k. Let $\alpha : S \to Y$ be a G-map where S denotes the boundary of D. Then the involutions on Y and D induces an involution on the quotient space

$$X = Y \cup_{\alpha} D = Y \amalg D / \{ y = \alpha(u) : u \in S \}.$$
 (3.12.1)

We say that X is obtained from Y by attaching a conjugation cell of dimension 2k. Observe that the fixed point subspace X^G is obtained from Y^G by attaching a k-cell (in the standard sense of CW-complexes). More genereally, we can attach to Y a set Λ of 2k-conjugation cells, using a G-map

$$\alpha: \coprod_{\lambda \in \Lambda} S_{\lambda} \to Y.$$

As before, we have an involution over the resulting space X and the fixed point set X^G is obtained from Y^G by attaching a collection of k-cells indexed by the same set Λ .

Remark 3.13. The notion of *G*-spaces, *G*-equivariant cohomology and conjugation spaces can be generalized to topological pairs (X, Y), where *X* is a *G*-space and *Y* is a *G*-stable subspace of *X*. Such a *G*-pair together with a cohomology frame (κ, σ) is called a Conjugation pair. The main fact about these conjugation pairs is that if (X, Y) is a Conjugation pair and *Y* is a Conjugation space, then *X* is a Conjugation space. (See Proposition 4.1 in [2].)

The main fact about the construction of attaching conjugation cells to a conjugation space is the following:

Proposition 3.14. Let Y be a conjugation space and let X be obtained from Y by attaching a collection of 2k-conjugation cells. Then X is a conjugation space.

Proof. Suppose that X is obtained from Y by attaching exactly one 2n-conjugation cell $D = D_{\lambda}$. According to Remark 3.13, We will show that (X, Y) is a conjugation pair. Using excision, we have $H^*(X, Y) \approx H^*(D, S)$ where $S = \partial D_{\lambda}$. As in example 3.3, one can show that there is a Cohomology frame $(\sigma_{\lambda}, \kappa_{\lambda})$ such that the equation

$$r_{\lambda}(\sigma_{\lambda}(a)) = \kappa_{\lambda}(a)u^{n} \tag{3.14.1}$$

holds, where $a \in H^n(D, S)$ is the non-zero element.

For the general case, suppose that X is obtained from Y by attaching a set Λ of 2n-conjugation cells. Set $D = \coprod_{\lambda \in \Lambda} D_{\lambda}$ and $S = \coprod_{\lambda \in \Lambda} \partial D_{\lambda}$. Then we have

$$H^*(D,S) = \prod_{\lambda \in \Lambda} H^*(D_\lambda, \partial D_\lambda)$$
(3.14.2)

$$H_G^*(D,S) = \prod_{\lambda \in \Lambda} H_G^*(D_\lambda, \partial D_\lambda).$$
(3.14.3)

Setting $\kappa = \prod_{\lambda \in \Lambda} \kappa_{\lambda}$, $\sigma = \prod_{\lambda \in \Lambda}$, it follows as in the previous case that

$$r(\sigma(a)) = \kappa(a)u^n$$

for any $a \in H^{2n}(X,Y) \approx H^{2n}(D,S)$ (by excision), where $r = \prod_{\lambda \in \Lambda} r_{\lambda}$. Therefore (X,Y) is a conjugation pair and so X is a conjugation space.

To complete the construction of conjugation complexes, we need the following Lemma (for details see Proposition 4.6 in [2]).

Lemma 3.15 (Direct Limits). Let (X_i, f_{ij}) be a directed system of conjugation spaces and *G*-equivariant inclusions, indexed by a directed set *I*. Suppose that each space X_i is T_1 . Then $X = \lim_{i \to \infty} X_i$ is a conjugation space.

Definition 3.16. A space X is a **conjugation complex** if it is equipped with a filtration

$$\emptyset = X_{-1} \subseteq X_0 \subseteq X_1 \subseteq \cdots X = \bigcup_{k=0}^{\infty} X_k$$
(3.16.1)

where X_k is obtained by attaching a collection of conjugation cells to X_{k-1} (indexed by a set $\Lambda_k(X)$). The topology on X is the direct limit topology.

By Proposition 3.14 and Lemma 3.15 it follows that a conjugation complex X is a conjugation space.

Example 3.17. The complex projective spaces $\mathbb{C}P^n$ and the complex Grassmannian Manifolds $Gr_k(\mathbb{C}^n)$ together with the complex conjugation, are conjugation complexes (and therefore conjugation spaces) for any $1 \leq n \leq \infty$ with the standard *CW*-complex decomposition.

References

- [1] A. Hatcher. Algebraic topology. Cambridge University Press, 2002.
- [2] JC.Hausmann, T.Holm, and V.Puppe. Conjugation spaces. Algebr. Geom. Topol., 5:923–964, 2005.
- [3] JC. Haussmann. Mod Two Homology and Cohomology. Springer, 2014.