Conjugation Spaces Comprehensive Examination Part II

Sergio Chaves

May 2016

1 Introduction

Let X be a topological space, a continuous action of a topological group G over X allow to study properties and invariants throughout symmetries of X ; we want to inherit to X an algebraic object that reflects both the topology and the group action since the usual cohomology ring $H^*(X)$ does not consider the action. The ring $H^*(X/G)$ is not a suitable candidate since in the orbit space X/G some pathologies may appear if the action of G on X is not free. We might consider then the ring $H^*(\tilde{X}/G)$ where \tilde{X} is some particular topological space which is homotopy equivalent to X and G acts on it freely.

We are particularly interested in involutions of X, namely, a continuous map $\tau : X \rightarrow$ X such that $\tau^2 = id$ induces an action of the group $G = \{id, \tau\}$ on X. Moreover, if X is a complex manifold and τ is the complex conjugation, some algebraic relations between the rings $H^*(X)$ and $H^*(\tilde{X}/G)$ occur. This notion can be generalized under suitable conditions over the cohomology rings leading to the concept of Conjugation Space.

In section §2. we present the generalities of the Borel construction \widetilde{X}/G and the Gequivariant cohomology ring $H^*(\tilde{X}/G)$, the proofs of that section are not presented and can be found in [3]. In section §3. is developed the theory of Conjugation Spaces, main properties and examples are presented. Throughout all the document, $H^*(X)$ will denote the singular cohomology ring $H^*(X;\mathbb{Z}_2)$ where \mathbb{Z}_2 denotes the field of two elements. For basic and introductory results on Algebraic Topology we will refer [1].

2 Spaces With Involution

Let X be a topological space. An **involution** on X is a continuous map $\tau : X \to X$ such that $\tau^2 = id$. If we denote by $G = {\tau, id}$ the cyclic group of order 2, an involution on X is equivalent to X being a G -space, that is, a continuous action of G over X .

The fixed point subspace of X, X^G is defined by

$$
X^G = \{ x \in X : \tau(x) = x \}
$$

So the complement of X^G in X is the subspace where the action of G is free.

Given two G-spaces X and Y, a G-map $f: X \to Y$ is a continuous function that commutes with the involutions, namely $f \circ \tau_X = \tau_Y \circ f$. Let $f^G : Y^G \to X^G$ denote the restriction of f to the fixed point subspaces. Two G -maps f_1, f_2 are G -homotopic if there exist a homotopy $F: X \times I \to Y$ connecting them such that for any $x \in X$ and $t \in I$, $\tau_Y F(x,t) = F(\tau_X(x), t)$.

Remark 2.1. Suppose that X is a G-space which has a CW -complex structure such that for each n, there is an action of G on the set of n-cells Λ_n , and a Gcharacteristic map $\psi_n : \Lambda_n \times D^n \to X$. (Here the action of G on $\Lambda_n \times D$ is given by $\tau(\lambda, x) = (\tau(\lambda), x)$. In this case we say that X is a G-CW-complex.

Observe that if X is a $G-CW$ -complex then the quotient space X/G inherits a CW structure, with the set of *n*-cells equal to Λ_n/G .

Example 2.2. The sphere S^n can be obtained from S^{n-1} by adjunction of two *n*-cells $Dⁿ$ attached by the identity map on the boundary $Sⁿ⁻¹$. Starting from $S⁰ = {\pm 1}$ we have a CW-structure on $Sⁿ$ with two k-cells and whose k-skeleton is S^k , for $k \leq n$. This is also a $G-CW$ -structure over $Sⁿ$ for the involution given by the antipodal map $x \mapsto -x$. The quotient space S^n/G is $\mathbb{R}P^n$ which inherits a CW-structure. This construction also is applied for the inductive limits S^{∞} and $\mathbb{R}P^{\infty}$.

Definition 2.3. Let X be a space with involution τ . The Borel construction X_G is the quotient space

$$
X_G = S^{\infty} \times_G X = (S^{\infty} \times X) / \sim \tag{2.3.1}
$$

where \sim is the equivalence relation $(z, x) \sim (-z, \tau(x))$.

If $f: X \to Y$ is a G-map, then the map $id \times f: S^{\infty} \times X \to S^{\infty} \times Y$ induces a continuous map $f_G: X_G \to Y_G$. Also, if X and Y have the same G-homotopy type, then X_G and Y_G have the same homotopy type.

Example 2.4. Consider the constant map $X \to pt$, since $pt_G = \mathbb{R}P^{\infty}$, the induced map $p: X_G \to \mathbb{R}P^\infty$ is given by $p([z, x]) = \hat{p}(z)$, where $\hat{p}: S^\infty \to \mathbb{R}P^\infty$ is the 2-fold covering projection.

Example 2.5. Suppose that the involution on X is trivial, that is $\tau(x) = x$ for all $x \in X$. Then we have a homeomorphism $X_G \xrightarrow{\approx} \mathbb{R}P^{\infty} \times X$, induced by the continuous maps $p: X_G \to \mathbb{R}P^{\infty}$ (from Example 2.4) and $X_G \to X$ (induced by the projection $S^{\infty} \times X \to X$).

Lemma 2.6. Let X be a space with involution τ .

1. The map $p: X_G \to \mathbb{R}P^\infty$ is a locally trivial fiber bundle with fiber homeomorphic to X.

- 2. if τ has a fixed point, then p admits a section. More precisely, each $v \in X^G$ provides a section $s_v : \mathbb{R}P^{\infty} \to X_G$ of p.
- 3. The quotient map $S^{\infty} \times X \to X_G$ is a 2-fold covering.
- 4. If X is a free G-space and Hausdorff, then morphism $q^*: H^*(X/G) \to H^*(X_G)$ (induced by the projection G-map $\tilde{q}: S^{\infty} \times X \to X$) is an isomorphism of graded algebras. Furhtermore, if X is a $G-CW$ -complex, the map q is a homotopy equivalence.

Moreover, we have the following consequence:

Corollary 2.7. Let X be a finite dimensional G -CW-complex. Then X has a fixed point if and only if the homomorphism $p^*: H^*(\mathbb{R}P^{\infty}) \to H^*(X_G)$ is injective.

Definition 2.8. Let X be a space with involution τ . The G-equivariant coho**mology** $H_G^*(X)$ is the cohomology algebra defined by

$$
H_G^*(X) = H^*(X_G). \tag{2.8.1}
$$

Recall that $H^*(\mathbb{R}P^{\infty}) \approx \mathbb{Z}_2[u]$ is the polynomial ring where u is a variable in degree 1. (See [1, Theorem 3.19]). In particular, $H_G^*(pt) = \mathbb{Z}_2[u]$. Observe that for any G-space, the homomorphism $p^* : H^*(\mathbb{R}P^*) \to H^*_G(X)$ gives $H^*_G(X)$ the structure of a $\mathbb{Z}_2[u]$ -algebra

Example 2.9. Suppose that the action of G on X is trivial, that is, $X^G = X$. From Example 2.5 we have that $X_G = \mathbb{R}P^{\infty} \times X$, so by the Künneth formula

$$
H_G^*(X) \approx \mathbb{Z}_2[u] \otimes H^*(X) \approx H^*(X)[u] \tag{2.9.1}
$$

Definition 2.10. Let X be a G-space, for any point $z \in S^{\infty}$, we have a map i_z : $X \to X_G$ given by $i_z(x) = [z, x]$. Since S^{∞} is path-connected, we have a well defined homomorphism (independent of z)

$$
\rho = i_z^* : H_G^*(X) \to H^*(X) \tag{2.10.1}
$$

We call ρ the forgetful homomorphism, and we say that X is equivariantly formal if ρ is surjective.

Observe that ρ is functorial, that is, if $f: Y \to X$ is a G-map, the following diagram

$$
H_G^*(X) \xrightarrow{\rho_X} H^*(X)
$$

$$
f_G^* \downarrow \qquad \qquad \downarrow f^*
$$

$$
H_G^*(Y) \xrightarrow{\rho_Y} H^*(Y)
$$

is commutative.

Consider the subalgebra of $H^*(X)$ given by

$$
H^*(X)^G = \{ a \in H^*(X) : \tau^*(a) = a \}. \tag{2.10.2}
$$

Let $z \in S^{\infty}$, for any $b \in H^*_{G}(X)$, we have that

$$
\tau^* \circ \rho(b) = \tau^* \circ i_z^*(b) = (i_z \circ \tau)^*(b) = i_{-z}^*(b) = \rho(b).
$$

This shows that $\rho(H_G^*(X)) \subseteq H^*(X)^G$.

Proposition 2.11. Let X be a G-space with $X^G \neq \emptyset$. Suppose that $\widetilde{H}^i(X) = 0$ for $0 \leq i < r$. Then there is a short exact sequence:

$$
0 \to H^r(\mathbb{R}P^\infty) \xrightarrow{p^*} H^r_G(X) \xrightarrow{\rho} H^r(X)^G \to 0.
$$
 (2.11.1)

Remark 2.12. If X is equivariantly formal, for each $k \in \mathbb{N}$, we can choose a \mathbb{Z}_{2} linear map $\sigma: H^k(X) \to H^k_G(X)$ such that $\rho \sigma = id$. This gives rise to an additive section $\sigma: H^*(X) \to H^*_G(X)$ of ρ . The Leray–Hirsch Theorem ([3, Theorem 4.1.17]) applied to the locally trivial fiber bundle $X \to X_G \to \mathbb{R}P^\infty$ implies that the induced map $\tilde{\sigma}: H^*(X)[u] \to H^*_G(X)$ is an isomorphism of $\mathbb{Z}_2[u]$ -modules (but not in general
an isomorphism of rings). Therefore, for an equivariantly formal space, $\ker(a)$ is the an isomorphism of rings). Therefore, for an equivariantly formal space, $\text{ker}(\rho)$ is the ideal generated by u.

Proposition 2.13. Consider the ideal of $H^*_G(X)$

$$
Ann(u) = \{ x \in H^*_{G}(X) : ux = 0 \}.
$$

The following conditions are equivalent:

- 1. X is equivariantly formal.
- 2. $H^*_G(X)$ is a free $\mathbb{Z}_2[u]$ -module.
- 3. $Ann(u) = 0.$

Let $r: H^*_G(X) \to H^*_G(X^G)$ be the homomorphism induced by the inclusion $X^G \hookrightarrow X$. As a consequence of Proposition 2.13 we have the following result:

Corollary 2.14. Let X be a G-space and suppose that $r: H^*_G(X) \to H^*_G(X^G)$ is injective. Then X is equivariantly formal.

The converse of the above result is not true in general; for instance, consider $X = S^{\infty}$ together with the antipodal action. Since S^{∞} is contractible, $H^*(S^{\infty}) \approx H^*(pt) = \mathbb{Z}_2$; moreover, by Lemma 2.6, $H_G^*(S^{\infty}) \approx H^*(S^{\infty}/G) = H^*(\mathbb{R}P^{\infty}) = \mathbb{Z}_2[u]$. Therefore, the map $\rho: H^*_{\mathcal{G}}(X) \to H^*(X)$ is surjective and thus X is equivariantly formal. However, $H_G^*(X^G) = H_G^*(\emptyset) = 0$ implies that the map $r: H_G^*(X) \to H_G^*(X^G)$ is not injective.

Definition 2.15. For a G -space X , let

$$
h_G^*(X) = \mathbb{Z}_2[u, u^{-1}] \otimes H_G^*(X) \tag{2.15.1}
$$

denote the **localization** of the cohomology algebra $H_G^*(X, Y)$.

Recall that $\mathbb{Z}_2[u, u^{-1}]$ is \mathbb{Z} -graded with $\mathbb{Z}_2[u, u^{-1}]^k = \text{span}_{\mathbb{Z}_2}(u^k)$. Therefore, $h_G^*(X, Y)$ is a Z-graded $\mathbb{Z}_2[u, u^{-1}]$ -algebra with

$$
h_G^*(X,Y)^k = \bigoplus_{i+j=k} \text{span}_{\mathbb{Z}_2}(u^i) \otimes H_G^j(X,Y)/\sim
$$

where \sim is the equivalence relation generated by $u^{i+1} \otimes a \sim u^i \otimes u$.

Example 2.16. Suppose that X is a free finite dimensional $G-CW$ -complex. By Lemma 2.6, $H^*_G(X) \approx H^*(X/G)$. Since X/G is a finite dimensional CW-complex, $H^*_G(X)$ is a torsion $\mathbb{Z}_2[u]$ -module. Therefore, the localization $h^*_G(X) = 0$. On the other hand, since the action is free, $X^G = \emptyset$ and thus $h_G^*(X^G) = 0$ as well. So in this case there is a trivial isomorphism $h_G^*(X) \approx h_G^*(X^G)$.

The isomorphism presented in the previous example can be generalized under suitable conditions, as the following theorem states.

Theorem 2.17 (Localization Theorem). Let X be a finite dimensional $G-CW$ complex. Then the inclusion $X^G \hookrightarrow X$ induces an isomorphism

$$
h^*_G(X)\xrightarrow{\approx} h^*_G(X^G)
$$

of $\mathbb{Z}\text{-}\mathrm{graded}\ \mathbb{Z}_2[u,u^{-1}]$ -algebras.

The finite dimensional hypothesis is necessary in this theorem; for instance, if $X = S^{\infty}$ with the antipodal involution, $X^G = \emptyset$, but $h_G^*(X) = \mathbb{Z}_2[u, u^{-1}]$ since $H_G^*(X) = \mathbb{Z}_2[u]$.

As a consequence of the Localization Theorem we have

Corollary 2.18. Let X be a G -space and suppose that X is equivariantly formal. Then the restriction homomorphism $r: H^*_G(X) \to H^*_G(X^G)$ is injective.

3 Conjugation Spaces

There are examples of G-spaces for which there exists a ring isomorphism $\kappa : H^{2*}(X) \to$ $H^*(X^G)$, where $H^{2*}(X)$ denotes the subalgebra of even degree elements in $H^*(X)$. This isomorphism is part of an interesting structure on equivariant cohomology, which generalizes these examples into the concept of a Conjugation Space. In this section we develop this concept and present properties and examples for these spaces.

Definition 3.1. Let X be a G-space, $\rho: H_G^{2*}(X) \to H^{2*}(X)$ the forgetful homomorphism and $r: H^*_G(X) \to H^*_G(X^G)$ the restriction homomorphism. A **cohomology** frame for X is a pair (κ, σ) satisfying

- $\kappa: H^{2*}(X) \to H^*(X^G)$ is an additive isomorphism dividing the degree in half.
- $\sigma: H^{2*}(X) \to H^{2*}_G(X)$ is an additive section of ρ .

• κ , σ satisfy the **conjugation equation** in the ring $H^*_{\mathcal{G}}(X^G)$; namely, for any $a \in H^{2m}(X), m \in \mathbb{N},$

$$
r \circ \sigma(a) = \kappa(a)u^m + p_m \tag{3.1.1}
$$

where p_m denotes *some* polynomial in $H_G^*(X^G) \approx H^*(X^G)[u]$ of degree less than m.

An involution τ admitting a cohomology frame is called a **conjugation**. Additionally, if $H^{odd}(X) = 0$ then X together with an involution is a **conjugation space**.

Notice that the existence of σ is equivalent to ρ being surjective and thus X is *equiv*ariantly formal (see Definition 1.9). We have the following examples of Conjugation Spaces.

Example 3.2. Let $D = D^{2n} = \{x \in \mathbb{R}^{2n} : ||x|| \leq 1\}$ and τ the involution given by $\tau(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{2n}) = (-x_1, \ldots, -x_n, x_{n+1}, \ldots, x_{2n})$. We have that D^G is homeomorphic to a disc of dimension n and therefore there is a canonical ring isomorphism $\kappa : H^{2*}(D) \to H^*(D^G)$. On the other hand, since D is G-homotopic to a point, $D_G \approx \mathbb{R}P^{\infty}$. Then the map $\rho: H^*_G(D) \to H^*(D)$ coincides with the evaluation at $u = 0$ which is clearly surjective. Let σ be an additive section of ρ ; for any $a \in H^{2m}(D)$, the conjugation equation holds trivially if $m > 0$. In the case $m = 0$, the equation $r \circ \sigma(a) = \kappa(a)$ follows immediately by definitions of the maps involved.

Example 3.3. Let D as in Example 3.2 and set $\Sigma = D/\partial D$. The action of G over D induces a well defined action over Σ . Since Σ is homeomorphic to the sphere S^{2n} and Σ^G to the sphere S^n , there is a obvious isomorphism $\kappa : H^{2*}(\Sigma) \to H^*(\Sigma^G)$, namely, sending the non-trivial element $a \in H^{2n}(\Sigma)$ to the non trivial element $b \in H^{n}(\Sigma^{G})$. By Proposition 2.11 and as $H^{2n}(\Sigma)^G = H^{2n}(\Sigma)$, the map $\rho: H^{2n}_G(\Sigma) \to H^{2n}(\Sigma)$ is surjective; in particular, this implies that Σ is equivariantly formal. Let σ be a section of ρ .

We only need to check that the conjugation equation holds for $a \in H^{2n}(\Sigma)$. As in Example 2.9, we have that $H_G^{2n}(\Sigma^G) \approx (H^*(\Sigma^G)[u])^{2n}$, then

$$
r(\sigma(a)) = \kappa(a)u^n \tag{3.3.1}
$$

follows from r being injective (Corollary 2.14).

Remark 3.4. Let X be a conjugation space. On $H^0(X)$, the map κ coincides with the restriction homomorphism $\tilde{r}: H^0(X) \to H^0(X^G)$. Indeed, for any $a \in H^0(X)$,
we have that $r(a) = r \circ \sigma(a)$ using the conjugation equation; on the other hand, there we have that $\kappa(a) = r \circ \sigma(a)$ using the conjugation equation; on the other hand, there is a commutative diagram

Thus we have $\kappa(a) = r \circ \sigma(a) = \tilde{r}(a)$.

In particular, the last remark implies that κ and σ are morphisms that preserve the units of the rings.

Theorem 3.5 (Multiplicativity Theorem). Let X be a conjugation space, then κ and σ are ring homomorphisms.

Proof. First we prove that $\sigma(ab) = \sigma(a)\sigma(b)$ for all $a \in H^{2k}(X)$, $b \in H^{2l}(X)$ Let $m = k + l$.

Since $\rho: H^0_G(X) \to H^0(X)$ is an isomorphism, the claim follows for $m = 0$. So we may suppose that $m > 0$. Since σ is a section of ρ , which is a ring homomorphism, we have

$$
\rho(\sigma(ab)) = ab, \text{ and } \rho(\sigma(a)\sigma(b)) = \rho(\sigma(a))\rho(\sigma(b)) = ab \qquad (3.5.1)
$$

Thus, $\sigma(ab) = \sigma(a)\sigma(b)$ mod ker ρ . Recall that $H^{odd}(X) = 0$, and by Remark 2.12 we have a $\mathbb{Z}[u]$ -module isomorphism $H^*_G(X) \approx H^*(X)[u]$ and $\text{ker}(\rho) = \langle u \rangle$; therefore it follows,

$$
\sigma(ab) = \sigma(a)\sigma(b) + \sigma(d_{2m-2})u^2 + \dots + \sigma(d_0)u^{2m}
$$
\n(3.5.2)

where $d_i \in H^i(X)$. We want to show that $d_{2m-2} = \cdots = d_0 = 0$.

Applying the restriction homomorphism r to the previous equation, we obtain

$$
\kappa(ab)u^{m} + \widetilde{p_{m}} = k(a)k(b)u^{m} + p_{m} + (\kappa(d_{2m-2})u^{m-1} + p_{m-1})u^{2} + \dots + \kappa(d_{0})u^{2m}
$$

= $\kappa(d_{0})u^{2m} + p_{2m}$

By comparing the 2m-th terms, we get $\kappa(d_0) = 0$, and thus $d_0 = 0$ by injectivity of κ . So we can rewrite the equation (3.5.2) as

$$
\kappa(ab)u^{m} + \widetilde{p_{m}} = \kappa(d_{2})u^{2m-1} + p_{2m-1}
$$
\n(3.5.3)

obtaining $d_2 = 0$ as before. Following the process inductively, we get $d_{2m-2} = \cdots =$ $d_2 = d_0 = 0$, proving that σ is a ring homomorphism.

To prove that $\kappa(ab) = \kappa(a)\kappa(b)$, using the conjugation equation (3.1.1) on both sides of

$$
r\sigma(ab) = r\sigma(a)r\sigma(b),
$$

we have

$$
\kappa(ab)u^m + p_m = (\kappa(a)u^k + p_k)(\kappa(b)u^l + p_l)
$$

= $\kappa(a)\kappa(b)u^m + \widetilde{p_m}$.

Therefore, $\kappa(ab) = \kappa(a)\kappa(b)$ by comparing degrees.

 \Box

As an immediate corollary, following Remark 2.12, we have

Corollary 3.6. The map $\widetilde{\sigma}: H^*(X)[u] \to H^*_G(X)$ induced by σ , is an isomorphism of $\mathbb{Z}_2[u]$ closelyzes of $\mathbb{Z}_2[u]$ -algebras.

Corollary 3.7. Let X be a conjugation space, then the restriction homomorphism $r: H^*_G(X) \to H^*_G(X^G)$ is injective.

Proof. Let $x \in \text{ker}(r)$. Since there is an isomorphism $H^*_G(X) \approx H^*(X)[u]$ induced by σ (Corollary 3.6), write

$$
x = \sigma(y)u^k + p_k \in H_G^{2n+k}(X)
$$

for some $y \in H^{2n}(X)$; without loss of generality, suppose that k is minimal. From the conjugation equation we get

$$
0 = r(x) = r(\sigma(y)u^k + p_m) = \kappa(y)u^{n+k} + p_{n+k};
$$
\n(3.7.1)

therefore $y = 0$ since κ is an isomorphism, and thus $x = 0$.

Now we focus on the naturality of the cohomology frames, which follows in part form the naturality given by the following diagrams.

Lemma 3.8. Let X and Y be conjugation spaces,

1. Let $f: Y \to X$ be a G-map, and $f^G: Y^G \to X^G$ the restriction to the fixed point subspaces. Then the following diagram

$$
H^*(X^G)[u] \xrightarrow{(f^G)^*[u]} H^*(Y^G)[u]
$$

\n
$$
\downarrow \approx \qquad \qquad \downarrow \approx
$$

\n
$$
H^*_G(X^G) \xrightarrow{(f^G_G)^*} H^*_G(Y^G)
$$

is commutative, where $(f^G)^*[u]$ is the polynomial extension of the map $(f^G)^*$.

2. Let r_X and r_Y be the restriction homomorphism for X and Y respectively. Then the following diagram

$$
H_G^*(X) \xrightarrow{r_X} H_G^*(X^G)
$$

$$
\downarrow (f_G)^* \qquad \qquad \downarrow (f_G^G)^*
$$

$$
H_G^*(Y) \xrightarrow{r_Y} H_G^*(Y^G)
$$

is commutative.

Now we can show the following result:

 \Box

 \Box

Proposition 3.9 (Naturality of Cohomology Frames). Let X and Y be conjugation spaces with (κ_X, σ_X) and (κ_Y, σ_Y) the respective cohomology frames. The conjugation space structure is natural, that is, the following diagrams are commutative:

$$
H^{2*}(X) \xrightarrow{\sigma_X} H_G^{2*}(X)
$$
\n
$$
(1) \quad f^* \downarrow \qquad \qquad f_G^*
$$
\n
$$
H^{2*}(Y) \xrightarrow{\sigma_Y} H_G^{2*}(Y)
$$
\n
$$
H^{2*}(X) \xrightarrow{\kappa_X} H^*(X^G)
$$
\n
$$
(2) \quad f^* \downarrow \qquad \qquad \downarrow (f^G)^*.
$$
\n
$$
H^{2*}(Y) \xrightarrow{\kappa_Y} H^*(Y^G)
$$

Proof. Fix k a natural number and let ρ_X and ρ_Y be the respective forgetful homomorphism. Since $f^* \circ \rho_X = \rho_Y \circ f_G^*$, for any $a \in H^{2k}(X)$ it follows,

$$
\rho_Y \circ f_G^* \circ \sigma_X(a) = f^* \circ \rho_X \circ \sigma_X(a) = f^*(a) = \rho_Y \circ \sigma_Y \circ f^*(a)
$$
\n(3.9.1)

From the above equation, we get the commutativity of the diagram (1) modulo ker ρ_Y . As in the proof of Theorem 3.5, write

$$
f_G^* \sigma_X(a) = \sigma_Y f^*(a) + \sigma_Y(d_{2k-2})u^2 + \dots + \sigma_Y(d_0)u^{2k}
$$
 (3.9.2)

for some $d_i \in H^i(Y)$. Applying r_Y to both sides of this equation, by Lemma 3.8 we get on the left hand side

$$
r_Y(f_G^*\sigma_X(a)) = (f_G^G)^*(r_X\sigma_X(a))
$$

= $(f_G^G)^*(\kappa_X(a)u^k + p_k)$
= $(f_G^G)^*(\kappa_X(a))u^k + \widetilde{p_k}$

and for the right hand side we obtain,

$$
r_Y(\sigma_Y f^*(a) + \sigma_Y(d_{2k-2})u^2 + \cdots + \sigma_Y(d_0)u^{2k}) = \kappa_Y(d_0)u^{2k} + p_{2k}
$$

Combining both sides we conclude that $\kappa_Y(d_0) = 0$ and then $d_0 = 0$ because of the injectivity of κ_Y . Therefore, the equation (3.8.2) can be rewritten as

$$
r_Y(f_G^* \sigma_X(a)) = \kappa_Y(d_2)u^{2k-2} + p_{2k-2}
$$
\n(3.9.3)

and as before, it follows $d_2 = 0$. We can continue this process to finally get

$$
f_G^* \circ \sigma_X(a) = \sigma_Y \circ f^*(a). \tag{3.9.4}
$$

To prove the commutativity of the diagram (2) , apply r_Y to both sides of equation (3.8.4), and the conjugation equation and Lemma 3.8 imply

$$
(f^G)^*(\kappa_X(a))u^k + p_k = \kappa_Y(f^*(a))u^k + \widetilde{p}_k; \tag{3.9.5}
$$

therefore, comparing the leading term u^k and using that $(f_G^G)^* = (f^G)^*[u]$ we obtain

$$
(f^G)^* \circ \kappa_X(a) = \kappa_Y \circ f^*(a) \tag{3.9.6}
$$

 \Box

Corollary 3.10 (Uniqueness of Cohomology Frames). Let (κ, σ) and (κ', σ') cohomology frames for an involution τ on X. Then $(\kappa, \sigma) = (\kappa', \sigma')$.

Proof. Set $Y = X$ and $f = id$ on proposition 3.9, this gives $\kappa = \kappa'$ and $\sigma = \sigma'$. \Box

Recall that on a conjugation space X , σ induces an isomorphism

$$
\widetilde{\sigma}: H^*(X)[u] \to H^*_G(X)
$$

(see Corollary 2.4). In fact, proposition 3.9 shows that this isomorphism is natural and gives the following result analogous to Lemma 2.5.

Corollary 3.11. For any G-map $f: Y \to X$ between conjugation spaces, the diagram

$$
H^*(X)[u] \xrightarrow{\tilde{\sigma}_x} H^*_G(X)
$$

$$
f^*[u] \qquad \qquad \downarrow f^*_G
$$

$$
H^*(Y)[u] \xrightarrow{\tilde{\sigma}_y} H^*_G(Y)
$$

is commutative, where $f^*[u]$ is the polynomial extension of the map f^* .

Many examples of conjugation spaces are constructed by successively attaching of cells homeomorphic to a disc in \mathbb{C}^n , together with the complex conjugation. This construction is analogous to the standard construction for CW-complexes, so in this section we focus on presenting some tools for construction of conjugation complexes.

The examples 3.2 and 3.3 motivate the following definition:

Definition 3.12. A conjugation cell of dimension $2n$ is the closed unit disk D in \mathbb{R}^{2n} with a linear involution τ which has exactly n eigenvalues equal to -1. Notice that D can be seen as the disc in \mathbb{C}^n and τ the complex conjugation. The space $\Sigma = D/\partial D$ is called a conjugation sphere of dimension $2n$.

Let Y be a topological space with an involution τ and D be a conjugation cell of dimension 2k. Let $\alpha : S \to Y$ be a G-map where S denotes the boundary of D. Then the involutions on Y and D induces an involution on the quotient space

$$
X = Y \cup_{\alpha} D = Y \amalg D / \{ y = \alpha(u) : u \in S \}. \tag{3.12.1}
$$

We say that X is obtained from Y by attaching a conjugation cell of dimension $2k$. Observe that the fixed point subspace X^G is obtained from Y^G by attaching a k-cell (in the standard sense of CW-complexes).

More genereally, we can attach to Y a set Λ of 2k-conjugation cells, using a G-map

$$
\alpha: \coprod_{\lambda \in \Lambda} S_{\lambda} \to Y.
$$

As before, we have an involution over the resulting space X and the fixed point set X^G is obtained from Y^G by attaching a collection of k-cells indexed by the same set Λ.

Remark 3.13. The notion of G-spaces, G-equivariant cohomology and conjugation spaces can be generalized to topological pairs (X, Y) , where X is a G-space and Y is a G-stable subspace of X. Such a G-pair together with a cohomology frame (κ, σ) is called a Conjugation pair. The main fact about these conjugation pairs is that if (X, Y) is a Conjugation pair and Y is a Conjugation space, then X is a Conjugation space. (See Proposition 4.1 in [2].)

The main fact about the construction of attaching conjugation cells to a conjugation space is the following:

Proposition 3.14. Let Y be a conjugation space and let X be obtained from Y by attaching a collection of $2k$ -conjugation cells. Then X is a conjugation space.

Proof. Suppose that X is obtained from Y by attaching exactly one $2n$ -conjugation cell $D = D_{\lambda}$. According to Remark 3.13, We will show that (X, Y) is a conjugation pair. Using excision, we have $H^*(X,Y) \approx H^*(D, S)$ where $S = \partial D_\lambda$. As in example 3.3, one can show that there is a Cohomology frame $(\sigma_{\lambda}, \kappa_{\lambda})$ such that the equation

$$
r_{\lambda}(\sigma_{\lambda}(a)) = \kappa_{\lambda}(a)u^{n}
$$
\n(3.14.1)

holds, where $a \in H^n(D, S)$ is the non-zero element.

For the general case, suppose that X is obtained from Y by attaching a set Λ of 2n-conjugation cells. Set $D = \coprod_{\lambda \in \Lambda} D_{\lambda}$ and $S = \coprod_{\lambda \in \Lambda} \partial D_{\lambda}$. Then we have

$$
H^*(D, S) = \prod_{\lambda \in \Lambda} H^*(D_{\lambda}, \partial D_{\lambda})
$$
\n(3.14.2)

$$
H_G^*(D, S) = \prod_{\lambda \in \Lambda} H_G^*(D_\lambda, \partial D_\lambda). \tag{3.14.3}
$$

Setting $\kappa = \prod_{\lambda \in \Lambda} \kappa_{\lambda}, \sigma = \prod_{\lambda \in \Lambda}$, it follows as in the previous case that

$$
r(\sigma(a)) = \kappa(a)u^n
$$

for any $a \in H^{2n}(X,Y) \approx H^{2n}(D,S)$ (by excision), where $r = \prod_{\lambda \in \Lambda} r_{\lambda}$. Therefore (X, Y) is a conjugation pair and so X is a conjugation space. \Box

To complete the construction of conjugation complexes, we need the following Lemma (for details see Proposition 4.6 in [2]).

Lemma 3.15 (Direct Limits). Let (X_i, f_{ij}) be a directed system of conjugation spaces and G-equivariant inclusions, indexed by a directed set I. Suppose that each space X_i is T_1 . Then $X = \underline{\lim} X_i$ is a conjugation space. \Box

Definition 3.16. A space X is a **conjugation complex** if it is equipped with a filtration

$$
\emptyset = X_{-1} \subseteq X_0 \subseteq X_1 \subseteq \cdots X = \bigcup_{k=0}^{\infty} X_k
$$
\n(3.16.1)

where X_k is obtained by attaching a collection of conjugation cells to X_{k-1} (indexed by a set $\Lambda_k(X)$. The topology on X is the direct limit topology.

By Proposition 3.14 and Lemma 3.15 it follows that a conjugation complex X is a conjugation space.

Example 3.17. The complex projective spaces $\mathbb{C}P^n$ and the complex Grassmannian Manifolds $Gr_k(\mathbb{C}^n)$ together with the complex conjugation, are conjugation complexes (and therefore conjugation spaces) for any $1 \leq n \leq \infty$ with the standard CW-complex decomposition.

References

- [1] A. Hatcher. *Algebraic topology*. Cambridge University Press, 2002.
- [2] JC.Hausmann, T.Holm, and V.Puppe. Conjugation spaces. Algebr. Geom. Topol., 5:923–964, 2005.
- [3] JC. Haussmann. Mod Two Homology and Cohomology. Springer, 2014.