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1 Introduction

Let X be a topological space, a continuous action of a topological group G over X
allow to study properties and invariants throughout symmetries of X; we want to
inherit to X an algebraic object that reflects both the topology and the group ac-
tion since the usual cohomology ring H∗(X) does not consider the action. The ring
H∗(X/G) is not a suitable candidate since in the orbit space X/G some pathologies
may appear if the action of G on X is not free. We might consider then the ring
H∗(X̃/G) where X̃ is some particular topological space which is homotopy equiva-
lent to X and G acts on it freely.

We are particularly interested in involutions of X, namely, a continuous map τ : X →
X such that τ2 = id induces an action of the group G = {id, τ} on X. Moreover, if
X is a complex manifold and τ is the complex conjugation, some algebraic relations
between the rings H∗(X) and H∗(X̃/G) occur. This notion can be generalized under
suitable conditions over the cohomology rings leading to the concept of Conjugation
Space.

In section §2. we present the generalities of the Borel construction X̃/G and the G-

equivariant cohomology ring H∗(X̃/G), the proofs of that section are not presented
and can be found in [3]. In section §3. is developed the theory of Conjugation Spaces,
main properties and examples are presented. Throughout all the document, H∗(X)
will denote the singular cohomology ring H∗(X;Z2) where Z2 denotes the field of two
elements. For basic and introductory results on Algebraic Topology we will refer [1].

2 Spaces With Involution

Let X be a topological space. An involution on X is a continuous map τ : X → X
such that τ2 = id. If we denote by G = {τ, id} the cyclic group of order 2, an involu-
tion on X is equivalent to X being a G-space, that is, a continuous action of G over X.
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The fixed point subspace of X, XG is defined by

XG = {x ∈ X : τ(x) = x}

So the complement of XG in X is the subspace where the action of G is free.

Given two G-spaces X and Y , a G-map f : X → Y is a continuous function that
commutes with the involutions, namely f ◦ τX = τY ◦ f . Let fG : Y G → XG denote
the restriction of f to the fixed point subspaces. Two G-maps f1, f2 are G-homotopic
if there exist a homotopy F : X × I → Y connecting them such that for any x ∈ X
and t ∈ I, τY F (x, t) = F (τX(x), t).

Remark 2.1. Suppose that X is a G-space which has a CW -complex structure
such that for each n, there is an action of G on the set of n-cells Λn, and a G-
characteristic map ψn : Λn ×Dn → X. (Here the action of G on Λn ×D is given by
τ(λ, x) = (τ(λ), x)). In this case we say that X is a G-CW -complex.

Observe that if X is a G-CW -complex then the quotient space X/G inherits a CW -
structure, with the set of n-cells equal to Λn/G.

Example 2.2. The sphere Sn can be obtained from Sn−1 by adjunction of two n-cells
Dn attached by the identity map on the boundary Sn−1. Starting from S0 = {±1}
we have a CW -structure on Sn with two k-cells and whose k-skeleton is Sk, for k ≤ n.
This is also a G-CW -structure over Sn for the involution given by the antipodal map
x 7→ −x. The quotient space Sn/G is RPn which inherits a CW -structure. This
construction also is applied for the inductive limits S∞ and RP∞.

Definition 2.3. Let X be a space with involution τ . The Borel construction XG

is the quotient space
XG = S∞ ×G X = (S∞ ×X)/ ∼ (2.3.1)

where ∼ is the equivalence relation (z, x) ∼ (−z, τ(x)).

If f : X → Y is a G-map, then the map id × f : S∞ × X → S∞ × Y induces a
continuous map fG : XG → YG. Also, if X and Y have the same G-homotopy type,
then XG and YG have the same homotopy type.

Example 2.4. Consider the constant map X → pt, since ptG = RP∞, the induced
map p : XG → RP∞ is given by p([z, x]) = p̂(z), where p̂ : S∞ → RP∞ is the 2-fold
covering projection.

Example 2.5. Suppose that the involution on X is trivial, that is τ(x) = x for all

x ∈ X. Then we have a homeomorphism XG
≈−→ RP∞×X, induced by the continuous

maps p : XG → RP∞ (from Example 2.4) and XG → X (induced by the projection
S∞ ×X → X).

Lemma 2.6. Let X be a space with involution τ .

1. The map p : XG → RP∞ is a locally trivial fiber bundle with fiber homeomorphic
to X.
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2. if τ has a fixed point, then p admits a section. More precisely, each v ∈ XG

provides a section sv : RP∞ → XG of p.

3. The quotient map S∞ ×X → XG is a 2-fold covering.

4. If X is a free G-space and Hausdorff, then morphism q∗ : H∗(X/G)→ H∗(XG)
(induced by the projection G-map q̃ : S∞×X → X) is an isomorphism of graded
algebras. Furhtermore, if X is a G-CW -complex, the map q is a homotopy
equivalence.

Moreover, we have the following consequence:

Corollary 2.7. Let X be a finite dimensional G-CW -complex. Then X has a fixed
point if and only if the homomorphism p∗ : H∗(RP∞)→ H∗(XG) is injective.

Definition 2.8. Let X be a space with involution τ . The G-equivariant coho-
mology H∗G(X) is the cohomology algebra defined by

H∗G(X) = H∗(XG). (2.8.1)

Recall that H∗(RP∞) ≈ Z2[u] is the polynomial ring where u is a variable in degree
1. (See [1, Theorem 3.19]). In particular, H∗G(pt) = Z2[u]. Observe that for any
G-space, the homomorphism p∗ : H∗(RP ∗) → H∗G(X) gives H∗G(X) the structure of
a Z2[u]-algebra

Example 2.9. Suppose that the action of G on X is trivial, that is, XG = X. From
Example 2.5 we have that XG = RP∞ ×X, so by the Künneth formula

H∗G(X) ≈ Z2[u]⊗H∗(X) ≈ H∗(X)[u] (2.9.1)

Definition 2.10. Let X be a G-space, for any point z ∈ S∞, we have a map iz :
X → XG given by iz(x) = [z, x]. Since S∞ is path-connected, we have a well defined
homomorphism (independent of z)

ρ = i∗z : H∗G(X)→ H∗(X) (2.10.1)

We call ρ the forgetful homomorphism, and we say that X is equivariantly
formal if ρ is surjective.

Observe that ρ is functorial, that is, if f : Y → X is a G-map, the following diagram

H∗G(X) H∗(X)

H∗G(Y ) H∗(Y )

-ρX

?
f∗
G

?
f∗

-
ρY

is commutative.
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Consider the subalgebra of H∗(X) given by

H∗(X)G = {a ∈ H∗(X) : τ∗(a) = a}. (2.10.2)

Let z ∈ S∞, for any b ∈ H∗G(X), we have that

τ∗ ◦ ρ(b) = τ∗ ◦ i∗z(b) = (iz ◦ τ)∗(b) = i∗−z(b) = ρ(b).

This shows that ρ(H∗G(X)) ⊆ H∗(X)G.

Proposition 2.11. Let X be a G-space with XG 6= ∅. Suppose that H̃i(X) = 0 for
0 ≤ i < r. Then there is a short exact sequence:

0→ Hr(RP∞)
p∗−→ Hr

G(X)
ρ−→ Hr(X)G → 0. (2.11.1)

Remark 2.12. If X is equivariantly formal, for each k ∈ N, we can choose a Z2-
linear map σ : Hk(X) → Hk

G(X) such that ρσ = id. This gives rise to an additive
section σ : H∗(X)→ H∗G(X) of ρ . The Leray–Hirsch Theorem ([3, Theorem 4.1.17])
applied to the locally trivial fiber bundle X → XG → RP∞ implies that the induced
map σ̃ : H∗(X)[u] → H∗G(X)is an isomorphism of Z2[u]-modules (but not in general
an isomorphism of rings). Therefore, for an equivariantly formal space, ker(ρ) is the
ideal generated by u.

Proposition 2.13. Consider the ideal of H∗G(X)

Ann(u) = {x ∈ H∗G(X) : ux = 0}.

The following conditions are equivalent:

1. X is equivariantly formal.

2. H∗G(X) is a free Z2[u]-module.

3. Ann(u) = 0.

Let r : H∗G(X)→ H∗G(XG) be the homomorphism induced by the inclusion XG ↪→ X.
As a consequence of Proposition 2.13 we have the following result:

Corollary 2.14. Let X be a G-space and suppose that r : H∗G(X) → H∗G(XG) is
injective. Then X is equivariantly formal.

The converse of the above result is not true in general; for instance, consider X = S∞

together with the antipodal action. Since S∞ is contractible, H∗(S∞) ≈ H∗(pt) = Z2;
moreover, by Lemma 2.6, H∗G(S∞) ≈ H∗(S∞/G) = H∗(RP∞) = Z2[u]. Therefore,
the map ρ : H∗G(X) → H∗(X) is surjective and thus X is equivariantly formal.
However, H∗G(XG) = H∗G(∅) = 0 implies that the map r : H∗G(X) → H∗G(XG) is not
injective.

Definition 2.15. For a G-space X, let

h∗G(X) = Z2[u, u−1]⊗H∗G(X) (2.15.1)

denote the localization of the cohomology algebra H∗G(X,Y ).
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Recall that Z2[u, u−1] is Z-graded with Z2[u, u−1]k = spanZ2
(uk). Therefore, h∗G(X,Y )

is a Z-graded Z2[u, u−1]-algebra with

h∗G(X,Y )k =
⊕
i+j=k

spanZ2
(ui)⊗Hj

G(X,Y )/ ∼

where ∼ is the equivalence relation generated by ui+1 ⊗ a ∼ ui ⊗ ua.

Example 2.16. Suppose that X is a free finite dimensional G-CW -complex. By
Lemma 2.6, H∗G(X) ≈ H∗(X/G). Since X/G is a finite dimensional CW -complex,
H∗G(X) is a torsion Z2[u]-module. Therefore, the localization h∗G(X) = 0. On the
other hand, since the action is free, XG = ∅ and thus h∗G(XG) = 0 as well. So in this
case there is a trivial isomorphism h∗G(X) ≈ h∗G(XG).

The isomorphism presented in the previous example can be generalized under suitable
conditions, as the following theorem states.

Theorem 2.17 (Localization Theorem). Let X be a finite dimensional G-CW -
complex. Then the inclusion XG ↪→ X induces an isomorphism

h∗G(X)
≈−→ h∗G(XG)

of Z-graded Z2[u, u−1]-algebras.

The finite dimensional hypothesis is necessary in this theorem; for instance, ifX = S∞

with the antipodal involution, XG = ∅, but h∗G(X) = Z2[u, u−1] since H∗G(X) = Z2[u].

As a consequence of the Localization Theorem we have

Corollary 2.18. Let X be a G-space and suppose that X is equivariantly formal.
Then the restriction homomorphism r : H∗G(X)→ H∗G(XG) is injective.

3 Conjugation Spaces

There are examples ofG-spaces for which there exists a ring isomorphism κ : H2∗(X)→
H∗(XG), where H2∗(X) denotes the subalgebra of even degree elements in H∗(X).
This isomorphism is part of an interesting structure on equivariant cohomology, which
generalizes these examples into the concept of a Conjugation Space. In this section
we develop this concept and present properties and examples for these spaces.

Definition 3.1. Let X be a G-space, ρ : H2∗
G (X)→ H2∗(X) the forgetful homomor-

phism and r : H∗G(X) → H∗G(XG) the restriction homomorphism. A cohomology
frame for X is a pair (κ, σ) satisfying

• κ : H2∗(X)→ H∗(XG) is an additive isomorphism dividing the degree in half.

• σ : H2∗(X)→ H2∗
G (X) is an additive section of ρ.
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• κ, σ satisfy the conjugation equation in the ring H∗G(XG); namely, for any
a ∈ H2m(X), m ∈ N,

r ◦ σ(a) = κ(a)um + pm (3.1.1)

where pm denotes some polynomial in H∗G(XG) ≈ H∗(XG)[u] of degree less
than m.

An involution τ admitting a cohomology frame is called a conjugation. Additionally,
if Hodd(X) = 0 then X together with an involution is a conjugation space.

Notice that the existence of σ is equivalent to ρ being surjective and thus X is equiv-
ariantly formal (see Definition 1.9). We have the following examples of Conjugation
Spaces.

Example 3.2. Let D = D2n = {x ∈ R2n : ‖x‖ ≤ 1} and τ the involution given
by τ(x1, . . . , xn, xn+1, . . . , x2n) = (−x1, . . . ,−xn, xn+1, . . . , x2n). We have that DG

is homeomorphic to a disc of dimension n and therefore there is a canonical ring
isomorphism κ : H2∗(D) → H∗(DG). On the other hand, since D is G-homotopic
to a point, DG ≈ RP∞. Then the map ρ : H∗G(D) → H∗(D) coincides with the
evaluation at u = 0 which is clearly surjective. Let σ be an additive section of ρ;
for any a ∈ H2m(D), the conjugation equation holds trivially if m > 0. In the case
m = 0, the equation r ◦ σ(a) = κ(a) follows immediately by definitions of the maps
involved.

Example 3.3. Let D as in Example 3.2 and set Σ = D/∂D. The action of G over D
induces a well defined action over Σ. Since Σ is homeomorphic to the sphere S2n and
ΣG to the sphere Sn, there is a obvious isomorphism κ : H2∗(Σ)→ H∗(ΣG), namely,
sending the non-trivial element a ∈ H2n(Σ) to the non trivial element b ∈ Hn(ΣG).

By Proposition 2.11 and as H2n(Σ)G = H2n(Σ), the map ρ : H2n
G (Σ) → H2n(Σ) is

surjective; in particular, this implies that Σ is equivariantly formal. Let σ be a section
of ρ.

We only need to check that the conjugation equation holds for a ∈ H2n(Σ). As in
Example 2.9, we have that H2n

G (ΣG) ≈ (H∗(ΣG)[u])2n, then

r(σ(a)) = κ(a)un (3.3.1)

follows from r being injective (Corollary 2.14).

Remark 3.4. Let X be a conjugation space. On H0(X), the map κ coincides with
the restriction homomorphism r̃ : H0(X) → H0(XG). Indeed, for any a ∈ H0(X),
we have that κ(a) = r ◦σ(a) using the conjugation equation; on the other hand, there
is a commutative diagram

H0
G(X) H0(X)

H0
G(XG) H0(XG)

?

r

�σ=ρ−1

?̃
r

�
�
�

��+

κ

-≈

Thus we have κ(a) = r ◦ σ(a) = r̃(a).
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In particular, the last remark implies that κ and σ are morphisms that preserve the
units of the rings.

Theorem 3.5 (Multiplicativity Theorem). Let X be a conjugation space, then κ and
σ are ring homomorphisms.

Proof. First we prove that σ(ab) = σ(a)σ(b) for all a ∈ H2k(X), b ∈ H2l(X) Let
m = k + l.

Since ρ : H0
G(X) → H0(X) is an isomorphism, the claim follows for m = 0. So we

may suppose that m > 0. Since σ is a section of ρ, which is a ring homomorphism,
we have

ρ(σ(ab)) = ab, and ρ(σ(a)σ(b)) = ρ(σ(a))ρ(σ(b)) = ab (3.5.1)

Thus, σ(ab) = σ(a)σ(b) mod ker ρ. Recall that Hodd(X) = 0, and by Remark 2.12
we have a Z[u]-module isomorphism H∗G(X) ≈ H∗(X)[u] and ker(ρ) = 〈u〉; therefore
it follows,

σ(ab) = σ(a)σ(b) + σ(d2m−2)u2 + · · ·+ σ(d0)u2m (3.5.2)

where di ∈ Hi(X). We want to show that d2m−2 = · · · = d0 = 0.

Applying the restriction homomorphism r to the previous equation, we obtain

κ(ab)um + p̃m = k(a)k(b)um + pm + (κ(d2m−2)um−1 + pm−1)u2 + · · ·+ κ(d0)u2m

= κ(d0)u2m + p2m

By comparing the 2m-th terms, we get κ(d0) = 0, and thus d0 = 0 by injectivity of
κ. So we can rewrite the equation (3.5.2) as

κ(ab)um + p̃m = κ(d2)u2m−1 + p2m−1 (3.5.3)

obtaining d2 = 0 as before. Following the process inductively, we get d2m−2 = · · · =
d2 = d0 = 0, proving that σ is a ring homomorphism.

To prove that κ(ab) = κ(a)κ(b), using the conjugation equation (3.1.1) on both sides
of

rσ(ab) = rσ(a)rσ(b),

we have

κ(ab)um + pm = (κ(a)uk + pk)(κ(b)ul + pl)

= κ(a)κ(b)um + p̃m.

Therefore, κ(ab) = κ(a)κ(b) by comparing degrees.

As an immediate corollary, following Remark 2.12, we have
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Corollary 3.6. The map σ̃ : H∗(X)[u] → H∗G(X) induced by σ, is an isomorphism
of Z2[u]-algebras.

Corollary 3.7. Let X be a conjugation space, then the restriction homomorphism
r : H∗G(X)→ H∗G(XG) is injective.

Proof. Let x ∈ ker(r). Since there is an isomorphism H∗G(X) ≈ H∗(X)[u] induced by
σ (Corollary 3.6), write

x = σ(y)uk + pk ∈ H2n+k
G (X)

for some y ∈ H2n(X); without loss of generality, suppose that k is minimal. From
the conjugation equation we get

0 = r(x) = r(σ(y)uk + pm) = κ(y)un+k + pn+k; (3.7.1)

therefore y = 0 since κ is an isomorphism, and thus x = 0.

Now we focus on the naturality of the cohomology frames, which follows in part form
the naturality given by the following diagrams.

Lemma 3.8. Let X and Y be conjugation spaces,

1. Let f : Y → X be a G-map, and fG : Y G → XG the restriction to the fixed
point subspaces. Then the following diagram

H∗(XG)[u] H∗(Y G)[u]

H∗G(XG) H∗G(Y G)

-(fG)∗[u]

?

≈

?

≈

-(fG
G )∗

is commutative, where (fG)∗[u] is the polynomial extension of the map (fG)∗.

2. Let rX and rY be the restriction homomorphism for X and Y respectively. Then
the following diagram

H∗G(X) H∗G(XG)

H∗G(Y ) H∗G(Y G)

-rX

?
(fG)∗

?
(fG

G )∗

-rY

is commutative.

Now we can show the following result:
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Proposition 3.9 (Naturality of Cohomology Frames). Let X and Y be conjugation
spaces with (κX , σX) and (κY , σY ) the respective cohomology frames. The conjugation
space structure is natural, that is, the following diagrams are commutative:

(1)

H2∗(X) H2∗
G (X)

H2∗(Y ) H2∗
G (Y )

-σX

?
f∗

?
f∗
G

-
σY

(2)

H2∗(X) H∗(XG)

H2∗(Y ) H∗(Y G)

-κX

?
f∗

?
(fG)∗

-
κY

.

Proof. Fix k a natural number and let ρX and ρY be the respective forgetful homo-
morphism. Since f∗ ◦ ρX = ρY ◦ f∗G, for any a ∈ H2k(X) it follows,

ρY ◦ f∗G ◦ σX(a) = f∗ ◦ ρX ◦ σX(a) = f∗(a) = ρY ◦ σY ◦ f∗(a) (3.9.1)

From the above equation, we get the commutativity of the diagram (1) modulo ker ρY .
As in the proof of Theorem 3.5, write

f∗GσX(a) = σY f
∗(a) + σY (d2k−2)u2 + · · ·+ σY (d0)u2k (3.9.2)

for some di ∈ Hi(Y ). Applying rY to both sides of this equation, by Lemma 3.8 we
get on the left hand side

rY (f∗GσX(a)) = (fGG )∗(rXσX(a))

= (fGG )∗(κX(a)uk + pk)

= (fGG )∗(κX(a))uk + p̃k

and for the right hand side we obtain,

rY (σY f
∗(a) + σY (d2k−2)u2 + · · ·+ σY (d0)u2k) = κY (d0)u2k + p2k

Combining both sides we conclude that κY (d0) = 0 and then d0 = 0 because of the
injectivity of κY . Therefore, the equation (3.8.2) can be rewritten as

rY (f∗GσX(a)) = κY (d2)u2k−2 + p2k−2 (3.9.3)

and as before, it follows d2 = 0. We can continue this process to finally get

f∗G ◦ σX(a) = σY ◦ f∗(a). (3.9.4)

To prove the commutativity of the diagram (2), apply rY to both sides of equation
(3.8.4), and the conjugation equation and Lemma 3.8 imply

(fG)∗(κX(a))uk + pk = κY (f∗(a))uk + p̃k; (3.9.5)
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therefore, comparing the leading term uk and using that (fGG )∗ = (fG)∗[u] we obtain

(fG)∗ ◦ κX(a) = κY ◦ f∗(a) (3.9.6)

Corollary 3.10 (Uniqueness of Cohomology Frames). Let (κ, σ) and (κ′, σ′) coho-
mology frames for an involution τ on X. Then (κ, σ) = (κ′, σ′).

Proof. Set Y = X and f = id on proposition 3.9, this gives κ = κ′ and σ = σ′.

Recall that on a conjugation space X, σ induces an isomorphism

σ̃ : H∗(X)[u]→ H∗G(X)

(see Corollary 2.4). In fact, proposition 3.9 shows that this isomorphism is natural
and gives the following result analogous to Lemma 2.5.

Corollary 3.11. For any G-map f : Y → X between conjugation spaces, the diagram

H∗(X)[u] H∗G(X)

H∗(Y )[u] H∗G(Y )

-σ̃x

≈

?

f∗[u]

?

f∗
G

-σ̃y

≈

is commutative, where f∗[u] is the polynomial extension of the map f∗.

Many examples of conjugation spaces are constructed by successively attaching of
cells homeomorphic to a disc in Cn, together with the complex conjugation. This
construction is analogous to the standard construction for CW -complexes, so in this
section we focus on presenting some tools for construction of conjugation complexes.

The examples 3.2 and 3.3 motivate the following definition:

Definition 3.12. A conjugation cell of dimension 2n is the closed unit disk D
in R2n with a linear involution τ which has exactly n eigenvalues equal to −1. Notice
that D can be seen as the disc in Cn and τ the complex conjugation. The space
Σ = D/∂D is called a conjugation sphere of dimension 2n.

Let Y be a topological space with an involution τ and D be a conjugation cell of
dimension 2k. Let α : S → Y be a G-map where S denotes the boundary of D. Then
the involutions on Y and D induces an involution on the quotient space

X = Y ∪α D = Y qD/{y = α(u) : u ∈ S}. (3.12.1)

We say that X is obtained from Y by attaching a conjugation cell of dimension 2k.
Observe that the fixed point subspace XG is obtained from Y G by attaching a k-cell
(in the standard sense of CW -complexes).
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More genereally, we can attach to Y a set Λ of 2k-conjugation cells, using a G-map

α :
∐
λ∈Λ

Sλ → Y.

As before, we have an involution over the resulting space X and the fixed point set
XG is obtained from Y G by attaching a collection of k-cells indexed by the same set
Λ.

Remark 3.13. The notion of G-spaces, G-equivariant cohomology and conjugation
spaces can be generalized to topological pairs (X,Y ), where X is a G-space and Y
is a G-stable subspace of X. Such a G-pair together with a cohomology frame (κ, σ)
is called a Conjugation pair. The main fact about these conjugation pairs is that if
(X,Y ) is a Conjugation pair and Y is a Conjugation space, then X is a Conjugation
space. (See Proposition 4.1 in [2].)

The main fact about the construction of attaching conjugation cells to a conjugation
space is the following:

Proposition 3.14. Let Y be a conjugation space and let X be obtained from Y by
attaching a collection of 2k-conjugation cells. Then X is a conjugation space.

Proof. Suppose that X is obtained from Y by attaching exactly one 2n-conjugation
cell D = Dλ. According to Remark 3.13, We will show that (X,Y ) is a conjugation
pair. Using excision, we have H∗(X,Y ) ≈ H∗(D,S) where S = ∂Dλ. As in example
3.3, one can show that there is a Cohomology frame (σλ, κλ) such that the equation

rλ(σλ(a)) = κλ(a)un (3.14.1)

holds, where a ∈ Hn(D,S) is the non-zero element.

For the general case, suppose that X is obtained from Y by attaching a set Λ of
2n-conjugation cells. Set D =

∐
λ∈ΛDλ and S =

∐
λ∈Λ ∂Dλ. Then we have

H∗(D,S) =
∏
λ∈Λ

H∗(Dλ, ∂Dλ) (3.14.2)

H∗G(D,S) =
∏
λ∈Λ

H∗G(Dλ, ∂Dλ). (3.14.3)

Setting κ =
∏
λ∈Λ κλ, σ =

∏
λ∈Λ, it follows as in the previous case that

r(σ(a)) = κ(a)un

for any a ∈ H2n(X,Y ) ≈ H2n(D,S) (by excision), where r =
∏
λ∈Λ rλ. Therefore

(X,Y ) is a conjugation pair and so X is a conjugation space.

To complete the construction of conjugation complexes, we need the following Lemma
(for details see Proposition 4.6 in [2]).
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Lemma 3.15 (Direct Limits). Let (Xi, fij) be a directed system of conjugation spaces
and G-equivariant inclusions, indexed by a directed set I. Suppose that each space Xi

is T1. Then X = lim−→Xi is a conjugation space.

Definition 3.16. A space X is a conjugation complex if it is equipped with a
filtration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · ·X =

∞⋃
k=0

Xk (3.16.1)

where Xk is obtained by attaching a collection of conjugation cells to Xk−1 (indexed
by a set Λk(X). The topology on X is the direct limit topology.

By Proposition 3.14 and Lemma 3.15 it follows that a conjugation complex X is a
conjugation space.

Example 3.17. The complex projective spaces CPn and the complex Grassmannian
Manifolds Grk(Cn) together with the complex conjugation, are conjugation complexes
(and therefore conjugation spaces) for any 1 ≤ n ≤ ∞ with the standard CW -complex
decomposition.
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