Cohomology of $H^*_{S^1 \rtimes \mathbb{Z}/2}(S^2)$

Sergio Chaves

July 22, 2018

Let $G = S^1 \rtimes \mathbb{Z}/2$ and consider the action of G over $X = S^2$ induced by the actions of $S¹$ given by the rotation along the z-axis and the action of $\mathbb{Z}/2$ given by the reflection τ along the plane xz; observe that the fixed point subspace $X^{\tilde{G}} = \{N, S\}$ consist of the two poles, and $X^{\tau} \cong S^1$.

Throughout this document $H^*(.)$ will denote the singular cohomology ring $H^*(., \mathbb{Z}/2)$ and X_G the Borel construction associated to the action G . First we will compute the G-equivariant cohomology of S^2 , and we will show that it is a free module over $H^*(BG)$. Moreover, if we restrict to $X^{\tau} \cong S^1$ under the action of $K = \{g \in S^1$: $g^2 = 1$ $\cong \mathbb{Z}/2$, we will show that $H^*_K(X^{\tau})$ is also a free module over $H^*(BK)$.

We will be using mainly the Mayer-Vietoris sequence for equivariant cohomology that we illustrate in the following proposition

Proposition 1. Let G be a topological group, let X be a G-space and $U, V \subseteq X$ subspaces such that $int(U) \cup int(V) = X$ and $G \cdot U \subseteq U$, $G \cdot V \subseteq V$. Then there is long exact sequence of abelian groups

$$
0 \to H_G^0(X) \to H_G^0(U) \oplus H_G^0(V) \to H_G^0(U \cap V) \to
$$

$$
H_G^1(X) \to H_G^1(U) \oplus H_G^1(V) \to H_G^1(U \cap V) \to H_G^2(X) \to \cdots
$$

Proof. Observe that there is a homeomorphism $X_G \cong int(U_G) \cup int(V_G)$ induced by the decomposition

$$
EG \times X = EG \times (int(U) \cup int(V))
$$

= $(EG \times int(U)) \cup (EG \times int(V))$
= $int(EG \times U) \cup int(EG \times V)$

and then apply the regular Mayer-Vietoris sequence for singular cohomology. \Box Also, the following fact will be useful for our purposes

Proposition 2. Let X be a G-space and $x \in X$ any elements. Denote by $G \cdot x =$ ${g \cdot x : g \in G}$ the orbit space of x, and $G_x = {g \in G : g \cdot x = x}$ the isotropy group of x. Then under the restriction of the action of X to $G \cdot x$, there is an isomorphism

$$
H_G^*(G \cdot x) \cong H^*(BG_x).
$$

Proof. There is a homeomorphism

$$
\varphi: EG/G_x \to (G \cdot x \times EG)/G
$$

given by $\varphi([t]) = [x.t]$; indeed,

- 1. φ is well defined: If $t = gs$ with $g \in G_x$, then $\varphi([t]) = [x, t] = [x, gs] =$ $[g^{-1}x, s] = [x, s] = \varphi([s]).$
- 2. φ is continuous: φ is the induced map of the G_x -invariant composite

$$
EG \to G \cdot x \times EG \to (G \cdot x \times EG)/G
$$

where the first map is the inclusion $t \mapsto (x, t)$ and the second map is the quotient map.

3. φ has an inverse: The map θ : $(G \cdot x \times EG)/G \to EG/G_x$ given by $[gx, t] = [g^{-1}t]$ is its inverse.

Therefore, we have an induced isomorphism in cohomology

$$
H^*(BG_x) \cong H^*(EG/G_x) \cong H^*((G \cdot x \times EG)/G) \cong H^*_G(G \cdot x)
$$

Now we go back to the main point of this document, set $X = S^2$, $U = S^2 - \{S\}$ and $V = S^2 - \{N\}$ we have G-homotopies $U \simeq V \simeq {\{*\}}$. So we get that $H^*_G(U) \cong$ $H^*_G(V) \cong H^*(BG)$. Also, $U \cap V$ is G-homotopic to S^1 , the equator circle of S^2 , which is the orbit space of the point $x = (1, 0, 0)$; in this case we have, $G \cdot x \cong S^1$ and $G_x = \{(1,1), (e^{i\pi}, \tau)\}\cong \mathbb{Z}/2$. From proposition 2 it follows that $H^*_G(U \cap V) \cong$ $H^*(BG_x) \cong H^*(B\mathbb{Z}/2).$

The inclusion map $i: U \cap V \to U$ is G-homotopic with the map $S^1 \to \{*\}$. Therefore, there is a commutative diagram

H[∗] ^G(U) H[∗] ^G(U ∩ V) H[∗] (BG) H[∗] (BGx) ⁱ ✲ ∗ ❄ ∼= ❄ ∼= ^ι ✲ ∗

where the map in the bottom row is induced by the inclusion $\iota: G_x \to G$.

Remark 3. Recall that there is an isomorphism $H^*(BG) \cong H^*(B\mathbb{Z}/2) \otimes H^*(BS^1) \cong$ $\mathbb{Z}/2[w,c]$ where $|w|=1, |c|=2$, such that the maps in cohomology induced by the inclusion $G_x \to G$ and projection $G \to \mathbb{Z}/2$ coincides with the canonical maps $\mathbb{Z}/2[w, c] \to \mathbb{Z}/2[w]$ and $\mathbb{Z}/2[w] \to \mathbb{Z}/2[w, c]$ respectively.

Under this remark, the map i^{*} coincides with the canonical map $\mathbb{Z}/2[w,c] \to \mathbb{Z}/2[w]$. Using the same argument, we also have that the map $j^* : H^*_{\mathcal{G}}(V) \to H^*_{\mathcal{G}}(U \cap V)$ coincides with the canonical map $\mathbb{Z}/2[w,c] \to \mathbb{Z}/2[w]$.

From the Mayer-Vietoris sequence for equivariant cohomology (Proposition 1) we get a long exact sequence of groups

$$
0 \to H_G^0(X) \to H_G^0(U) \oplus H_G^0(V) \to H_G^0(U \cap V) \to H_G^1(X) \to H_G^1(U) \oplus H_G^1(V) \to
$$

$$
H_G^2(X) \to H_G^2(U) \oplus H_G^2(V) \to H_G^2(U \cap V) \to \cdots
$$

Recall that the map $H_G^k(U) \oplus H_G^k(V) \to H_G^k(U \cap V)$ is given by $i^* - j^*$ (or in this case by $i^* + j^*$, and by the Remark 3 such map is clearly surjective.

Therefore; there is a short exact sequence of graded $H^*(BG)$ -modules

 $0 \to H_G^*(X) \to H_G^*(U) \oplus H_G^*(V) \to H_G^*(U \cap V) \to 0$

that is,

$$
H^*_G(S^2)\cong \ker(\mathbb{Z}/2[w,c]\oplus \mathbb{Z}/2[w,c]\xrightarrow{i^*+j^*}\mathbb{Z}/2[w])
$$

We assert that $H^*(X)$ is a free module over $H^*(BG)$; as we illustrate under the next result:

Proposition 4. ker $(i^* + j^*)$ is freely generated by $\{(1, 1), (c, 0)\}$ as $H^*(BG)$ -module. *Proof.* Recall that the module structure of $H^*(BG)$ over $H^*(BG) \oplus H^*(BG)$ is given by

$$
r \cdot (p, q) = (rp, rq)
$$

for any $r, p, q \in \mathbb{Z}/2[w, c]$. Also, the map $i^* + j^*$ is given by

$$
(i^*, j^*)(p(w, c), q(w, c)) = p(w, 0) + q(w, 0)).
$$

It is clear that $(1,1), (c,0) \in \text{ker}(i^* + j^*)$. Now let $(p(w, c), q(w, c)) \in \text{ker}(i^* + j^*)$; suppose that $|p| = m$ and $|q| = n$ and assume without loss of generality that $m \leq n$. Write

$$
(p(w, c), q(w, c)) = (p_0, q_0) + \cdots + (p_m, q_m) + (0, q_{m+1}) + \cdots + (0, q_n)
$$

where p_k, q_k are homogeneous polynomials in $\mathbb{Z}/2[w, c]$ of degree k. For $m < k \leq n$, we have that $(i^* + j^*)(0, q_k(w, c)) = q(w, 0) = 0$; this implies that $n \ge 2$ and $q(w, c) =$ $c\widetilde{q_k}(w, c)$; thus we can write

$$
(0, q_k) = \widetilde{q_k} \cdot (0, c) = c\widetilde{q_k} \cdot (1, 1) + \widetilde{q_k} \cdot (c, 0);
$$

that is, $(0, q_k)$ belongs to the module generated by $\{(1, 1), (c, 0)\}.$

We can assume then that p, q are homogeneous polynomials in $\mathbb{Z}/2[w, c]$ of the same degree m; namely,

$$
p(w, c) = \gamma w^m + c\tilde{p}(w, c)
$$

and

 $q(w, c) = \gamma' w^m + c \widetilde{q}(w, c)$

where $|\tilde{p}|, |\tilde{q}| < k$. Since $(i^* + j)^*(p, q) = 0$ we conclude that $\gamma = \gamma'$; write

$$
(p,q) = \gamma w^m \cdot (1,1) + \widetilde{p} \cdot (c,0) + \widetilde{q} \cdot (0,c)
$$

= $\gamma w^m \cdot (1,1) + \widetilde{p} \cdot (c,0) + c\widetilde{q} \cdot (1,1) + \widetilde{q} \cdot (c,0)$
= $(\gamma w^m + c\widetilde{q}) \cdot (1,1) + (\widetilde{p} + \widetilde{q}) \cdot (c,0)$

which proves the assertion.

 \Box

Now we restrict to $X^{\tau} \cong S^1$ under the action of $K = \{g \in S^1 : g^2 = 1\} \cong \mathbb{Z}/2$. This action coincides with the reflection of a circle along the vertical axis.

With a decomposition similar to the chosen in the above case of S^2 , we apply the equivariant Mayer-Vietoris sequence with $X = S^1$, $U = S^1 - \{S\} \cong \{*\}$, $V =$ $S^1 - \{N\} \cong \{*\}$ and $U \cap V$ is homotopic to a two-points subspace. Therefore, we get

$$
H^*_K(U)\cong H^*_K(V)\cong H^*(BK)\cong \mathbb{Z}/2[w]
$$

where $|w|=1$ and

$$
H_K^*(U \cap V) \cong H^*(U \cap V/K) \cong H^*(\{*\}) \cong \mathbb{Z}/2.
$$

From the sequence given by Proposition 1 we get

$$
0 \to H_K^0(X^{\tau}) \to H_K^0(U) \oplus H_K^0(V) \to H_G^0(U \cap V) \to H_K^1(X^{\tau}) \to \cdots
$$

\n
$$
H_K^i(U \cap V) = 0 \text{ for } i > 2 \text{, we have an isomorphism}
$$

Since $H^i_K(U \cap V) = 0$ for $i \geq 2$, we have an isomorphism

$$
H^i(X) \cong H^i(U) \oplus H^i(V) \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2
$$

and for the loweer lever terms we get a short exact sequence

$$
0 \to H^0_K(X) \to \mathbb{Z}/2 \oplus \mathbb{Z}/2 \to \mathbb{Z}/2 \to H^1_K(X) \to \mathbb{Z}/2 \oplus \mathbb{Z}/2 \to 0
$$

The surjectivity of the map $\mathbb{Z}/2 \oplus \mathbb{Z}/2 \to \mathbb{Z}/2$ implies that

$$
H^0_K(X) \to \mathbb{Z}/2 \text{ and } H^1_K(X) \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2
$$

Therefore, there is a short exact sequence of graded $H^*(BK)$ -modules

$$
0\to H^*_K(X^\tau)\to H^*(BK)\oplus H^*(BK)\to H^*(\{*\})\to 0
$$

Recall that the module structure over $H^*(\{*\})$ is given by $w \cdot 1 = 0$; so $H^*_K(X^{\tau})$ is isomorphic to the free submodule of $H^*(BK) \oplus H^*(BK)$ generated by $(1, 1)$ and $(w, 0)$.