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Motivation

Let X be a topological space with a continuous action of a group
G . (G -space for short)

Is there an algebraic invariant of X that captures both the
topology and the nature of the action?

The singular cohomology H∗(X ) depends just on the topology
of X .

How about the cohomology of the orbit space H∗(X/G )?

Example

Let X = S2 and G = Z/2 be the antipodal action on X . Then
H∗(X/G ) ∼= H∗(RP2).
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However...

Example

Let X = S2.

G = S1

X/GXG

Here, H∗(X/G ) ∼= H∗(pt).
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Borel’s amazing idea

Replace X by a G -space X̃ where G acts freely and also X ' X̃ .

Keypoint: Find a contractible space E where G acts freely and
consider X̃ = E × X .

Theorem

For any topological group G , there exist a unique (up to
homotopy) contractible space EG with a free action of G .

The orbit space BG := EG/G is called the classifying space of G .

Example

G = S1, EG = S∞, BG = CP∞.

G = Z/2, EG = S∞, BG = RP∞.

G = Z, EG = R, BG = S1.
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Equivariant Cohomology

Definition (Seminar on transformation groups - A. Borel. 1960.)

For a G -space X , the Borel construction of X is the space
XG = (EG × X )/G and the G -equivariant cohomology of X is
defined as

H∗G (X ) := H∗(XG ).

Example

Let X = pt be the “single-point” space. Then
XG = (EG × pt)/G = EG/G ∼= BG . Therefore,

H∗G (pt) = H∗(BG )

If G = S1, then H∗G (pt) = H∗(CP∞) is a polynomial ring in one
variable.
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Particular group actions

If G acts on X trivially (i.e. XG = X ) we have

XG
∼= BG × X and H∗G (X ) ∼= H∗(BG )⊗ H∗(X ).

In particular for any G -space X , G acts trivially on the fixed
point subspace and then

H∗G (XG ) ∼= H∗(BG )⊗ H∗(XG )

If G acts on X freely, we have

XG ' X/G and H∗G (X ) ∼= H∗(X/G ).
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Equivariant Formality

For z ∈ EG , the inclusion of the fiber iz : X → XG given by
iz(x) = [z , x ] induces a map

r : H∗G (X )→ H∗(X ).

Proposition

Suppose that the map r : H∗G (X )→ H∗(X ) is surjective. Then
there is an isomorphism

H∗G (X ) ∼= H∗(BG )⊗ H∗(X )

“This is a consequence of the Leray-Hirsch Theorem”. In this case,
we say that X is G -equivariantly formal.
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A module structure on H∗G (X )

For any G -spaces X ,Y and a G -equivariant map f : X → Y (i.e.
f (g · x) = g · f (x)), there is an induced map

f ∗G : H∗G (Y )→ H∗G (X ).

The constant map X → pt is G -equivariant and gives rise to a map

p : H∗G (pt)→ H∗G (X ).

Since ptG ∼= BG , p induces a module structure on H∗G (X ) over the
ring H∗(BG ).

Remark

The map f ∗G : H∗G (Y )→ H∗G (X ) is a map of H∗(BG )-modules.
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Free modules

Remember:

Let M be a module over a ring R. We say that M is a free
module, if there is an isomorphism M ∼= Rk for some k ≥ 1.

If H∗G (X ) ∼= H∗(BG )⊗ H∗(X ), a k-basis of H∗(X ) induces a
R-basis of H∗G (X ) and thus H∗G (X ) is a free R-module

Summary

1 The map r : H∗G (X )→ H∗(X ) is surjective (X is
G -equivariantly formal).

2 There is an isomorphism H∗G (X ) ∼= H∗(BG )⊗ H∗(X ).

3 H∗G (X ) is a free H∗(BG )-module.

We know that (1)⇒ (2)⇒ (3), but they are equivalent under
extra assumptions (e.g. G connected).

Sergio Chaves Equivariant Cohomology



Motivation The Borel construction Equivariant formality Torus actions 2-Torus actions

Free modules

Remember:

Let M be a module over a ring R. We say that M is a free
module, if there is an isomorphism M ∼= Rk for some k ≥ 1.

If H∗G (X ) ∼= H∗(BG )⊗ H∗(X ), a k-basis of H∗(X ) induces a
R-basis of H∗G (X ) and thus H∗G (X ) is a free R-module

Summary

1 The map r : H∗G (X )→ H∗(X ) is surjective (X is
G -equivariantly formal).

2 There is an isomorphism H∗G (X ) ∼= H∗(BG )⊗ H∗(X ).

3 H∗G (X ) is a free H∗(BG )-module.

We know that (1)⇒ (2)⇒ (3), but they are equivalent under
extra assumptions (e.g. G connected).

Sergio Chaves Equivariant Cohomology



Motivation The Borel construction Equivariant formality Torus actions 2-Torus actions

Free modules

Remember:

Let M be a module over a ring R. We say that M is a free
module, if there is an isomorphism M ∼= Rk for some k ≥ 1.

If H∗G (X ) ∼= H∗(BG )⊗ H∗(X ), a k-basis of H∗(X ) induces a
R-basis of H∗G (X ) and thus H∗G (X ) is a free R-module

Summary

1 The map r : H∗G (X )→ H∗(X ) is surjective (X is
G -equivariantly formal).

2 There is an isomorphism H∗G (X ) ∼= H∗(BG )⊗ H∗(X ).

3 H∗G (X ) is a free H∗(BG )-module.

We know that (1)⇒ (2)⇒ (3), but they are equivalent under
extra assumptions (e.g. G connected).

Sergio Chaves Equivariant Cohomology



Motivation The Borel construction Equivariant formality Torus actions 2-Torus actions

Comparing subgroups

Let K ⊆ G be a subgroup. Then any G -space X becomes a
K -space by restriction of the action.

If X is G -equivariantly formal then it is K -equivariantly formal.

H∗G (X ) H∗(X )

H∗K (X )

rG

rK

Theorem [Allday - Hauschild - Puppe (2002)]

Let G = S1 × · · ·S1 = (S1)n and let X be a G -space. X is
G -equivariantly formal if and only if it is K -equivariantly formal for
any subgroup K ∼= S1.
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Looking at torus actions

A torus T is a group homeomorphic to (S1)n for some n ≥ 1.

H∗(BT ) = H∗((CP∞)n) ∼= k[t1, . . . , tn] where deg(ti ) = 2.

Let G be a compact connected Lie group. It admits a
maximal torus subgroup T ⊆ G

Assume k is a field of characteristic 0.

Theorem [Hsiang (1975)]

Let X be a G -space where G is a compact connected Lie group.
Denote by T a maximal torus of G . Then

H∗T (X ) ∼= H∗G (X )⊗H∗(BG) H
∗(BT ).

X is G -equivariantly formal if and only if it is T -equivariantly
formal.
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The Betti number criterion

For a topological space X , denote its Betti sum by

b(X ) =
∑
i≥0

dimk H
i (X ).

Theorem (Borel. 1960)

Let T be a torus and X a T -space with b(X ) <∞. X is
T -equivariantly formal if and only if b(X ) = b(XT ).

In particular, if the action of T on X is free, then XT = ∅ and
then H∗T (X ) is NOT equivariantly formal.
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Examples

Example

Recall S2 with the rotation action of S1. It is S1-equivariantly
formal as b(S2) = b(S0) = 2,

H∗S1(S2) ∼= H∗(BS1)⊗ H∗(S2).

The same idea applies to the action of S1 on S3 ⊆ C2 given by
z · (u, v) = (zu, v). Here (S3)S

1 ∼= S1 and

H∗S1(S3) ∼= H∗(BS1)⊗ H∗(S3)

Example

The Hopf fibration S1 → S3 → S2 arises from a free action of S1

on S3 (This can be described as CP1 ∼= S3/S1). Then

H∗S1(S3) ∼= H∗(S2)

Sergio Chaves Equivariant Cohomology
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A non-equivarianlty formal example

Example

Let X be the space obtained from S2 by identifying the north and
south poles.

X is homotopy equivalent to a wedge of a sphere and a circle.
Thus b0(X ) = 1, b1(X ) = 1, b2(X ) = 1 and so b(X ) = 3. On the
other hand, X S1

consists of a single fixed point, then b(X ) = 1.
Therefore, X is not equivariantly formal.
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Involutions as group actions

Let τ : X → X be an involution. Then X has an induced action of
the group G = {id , τ} ∼= Z/2. Conversely, any action of Z/2 on X
give rise to an involution on X .

Definition

A 2-torus is a group G ∼= (Z/2)n for some n ≥ 0. If G acts on a
space X , this is equivalent to X having n-commuting involutions.

Let k be a field of characteristic 2 now.

Remark

For any 2-torus G , we have that

H∗(BG ) = H∗((RP∞)n) ∼= k[w1, . . . ,wn]

where deg(wi ) = 1.
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Comparing with the torus case

Betti sum criterion (Borel -1960)

Let G be a 2-torus and X a G -space with b(X ) <∞. X is
G -equivariantly formal if and only if b(X ) = b(XG ).

Equivariant formality is not captured by subgroups

There is a space X with an action of G = Z/2× Z/2 such that X
is not equivariantly formal, but it is with respect to every subgroup
K ⊆ G , K ∼= Z/2.

Remark

Let T = (S1)n be a torus. Then the subgroup G consisting of
those elements g ∈ T such that g2 = e, is a 2-torus isomorphic to
(Z/2)n.
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Comparing with the torus case

Theorem [S. - Franz (2018)]

Let X be a space with an action of a torus T . Let G ⊆ T be its
2-torus subgroup. Then

H∗G (X ) ∼= H∗T (X )⊗H∗(BT ) H
∗(BG ).

X is T -equivariantly formal if and only if it is G -equivariantly
formal.

Coefficients Matter

Let X be the “Croissant” space with the action of S1. Then
XG ∼= S1 ∨ S1 and thus b(XG ) = b(X ). This implies that X is
T -equivariantly formal.
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Using group cohomology

Remark

As G is a finite group, H∗(BG ) ∼= H∗grp(G ). In particular, for a
k[G ]-module M.

H∗(BG ;M) ∼= H∗grp(G ;M)

Theorem

Let X be a space with an action of a 2-torus G . Then,

H∗G (X ) ∼= H∗grp(G ;C ∗(X )).

There is a homotopy equivalence

C ∗(XG ) ' Tot(H∗grp(G )⊗ C ∗(X ))

X is G -equivariantly formal if and only if H∗G (X ) is a free
module over H∗(BG ).

Sergio Chaves Equivariant Cohomology



Motivation The Borel construction Equivariant formality Torus actions 2-Torus actions

References

A. Borel. Seminar on Transformation Groups. Ann of Math
Stud, No 46. Princeton: Princeton Univ Press, (1960).

W. Hsiang Cohomology Theory of Topological Transformation
Groups Springer, (1975).

C. Allday., V. Hauschild, and V. Puppe. A non-fixed point
theorem for Hamiltonian Lie group actions. Transactions of the
American Mathematical Society, 354(7), pp.2971-2982 ,
(2002).

S. , M. Franz. Equivariant cohomology: The 2-torus case. In
preparation.

Sergio Chaves Equivariant Cohomology


	Motivation
	The Borel construction
	Equivariant formality
	Torus actions
	2-Torus actions

