Equivariant Cohomology A topological and an algebraic approach.

Sergio Chaves

University of Western Ontario

44th Annual New York State Regional Graduate Mathematics Conference Syacuse University March 2019

Motivation

Let X be a topological space with a continuous action of a group G. (G-space for short)

- Is there an algebraic invariant of X that captures both the topology and the nature of the action?
- The singular cohomology $H^*(X)$ depends just on the topology of X .

Motivation

Let X be a topological space with a continuous action of a group G. (G-space for short)

- Is there an algebraic invariant of X that captures both the topology and the nature of the action?
- The singular cohomology $H^*(X)$ depends just on the topology of X .

How about the cohomology of the orbit space $H^*(X/G)$?

Motivation

Let X be a topological space with a continuous action of a group G. (G-space for short)

- Is there an algebraic invariant of X that captures both the topology and the nature of the action?
- The singular cohomology $H^*(X)$ depends just on the topology of X .

How about the cohomology of the orbit space $H^*(X/G)$?

Example

Let $X = S^2$ and $G = \mathbb{Z}/2$ be the antipodal action on X. Then $H^*(X/G) \cong H^*(\mathbb{R}P^2).$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

重

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

重

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

重

Here, $H^*(X/G) \cong H^*(pt)$.

 \leftarrow \Box \rightarrow

医头面

E

경제 \rightarrow \blacktriangleleft

Replace X by a G-space \tilde{X} where G acts freely and also $X \simeq \tilde{X}$.

 $2Q$

Replace X by a G-space \tilde{X} where G acts freely and also $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely and consider $\tilde{X} = F \times X$.

 Ω

Replace X by a G-space \tilde{X} where G acts freely and also $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely and consider $\tilde{X} = F \times X$.

Theorem

For any topological group G, there exist a unique (up to homotopy) contractible space EG with a free action of G.

つくい

Replace X by a G-space \tilde{X} where G acts freely and also $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely and consider $\tilde{X} = F \times X$.

Theorem

For any topological group G, there exist a unique (up to homotopy) contractible space EG with a free action of G.

The orbit space $BG := EG/G$ is called the classifying space of G.

つくい

Replace X by a G-space \tilde{X} where G acts freely and also $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely and consider $\tilde{X} = F \times X$.

Theorem

For any topological group G, there exist a unique (up to homotopy) contractible space EG with a free action of G.

The orbit space $BG := EG/G$ is called the classifying space of G.

Example

•
$$
G = S^1
$$
, $EG = S^{\infty}$, $BG = \mathbb{C}P^{\infty}$.

•
$$
G = \mathbb{Z}/2
$$
, $EG = S^{\infty}$, $BG = \mathbb{R}P^{\infty}$.

$$
\bullet \ \ G=\mathbb{Z}, \ EG=\mathbb{R}, \ BG=S^1.
$$

E

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 QQ

Equivariant Cohomology

Definition (Seminar on transformation groups - A. Borel. 1960.)

For a G-space X, the Borel construction of X is the space $X_G = (EG \times X)/G$ and the G-equivariant cohomology of X is defined as

 $H^*_G(X) := H^*(X_G).$

Equivariant Cohomology

Definition (Seminar on transformation groups - A. Borel. 1960.)

For a G-space X, the Borel construction of X is the space $X_G = (EG \times X)/G$ and the G-equivariant cohomology of X is defined as

 $H^*_G(X) := H^*(X_G).$

Example

Let $X = pt$ be the "single-point" space. Then $X_G = (EG \times pt)/G = EG/G \cong BG$. Therefore,

 $H_G^*(pt) = H^*(BG)$

If $G=S^1$, then $H^*_G(pt)=H^*(\mathbb{C} P^{\infty})$ is a polynomial ring in one variable.

何 ▶ イヨ ▶ イヨ ▶ │

Particular group actions

If G acts on X trivially (i.e. $X^G=X)$ we have

 $X_G \cong BG \times X$ and $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$.

Particular group actions

If G acts on X trivially (i.e. $X^G=X)$ we have

$$
X_G \cong BG \times X \text{ and } H^*_G(X) \cong H^*(BG) \otimes H^*(X).
$$

In particular for any G -space X , G acts trivially on the fixed point subspace and then

$$
H^*_G(X^G) \cong H^*(BG) \otimes H^*(X^G)
$$

Particular group actions

If G acts on X trivially (i.e. $X^G=X)$ we have

$$
X_G \cong BG \times X \text{ and } H^*_G(X) \cong H^*(BG) \otimes H^*(X).
$$

In particular for any G-space X , G acts trivially on the fixed point subspace and then

$$
H^*_G(X^G) \cong H^*(BG) \otimes H^*(X^G)
$$

• If G acts on X freely, we have

$$
X_G \simeq X/G \text{ and } H^*_G(X) \cong H^*(X/G).
$$

つくい

Equivariant Formality

For $z \in EG$, the inclusion of the fiber $i_z : X \to X_G$ given by $i_z(x) = [z, x]$ induces a map

$$
r: H^*_G(X) \to H^*(X).
$$

Proposition

Suppose that the map $r\colon H^*_G(X)\to H^*(X)$ is surjective. Then there is an isomorphism

 $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$

何 ▶ (三)

Equivariant Formality

For $z \in EG$, the inclusion of the fiber $i_z : X \to X_G$ given by $i_z(x) = [z, x]$ induces a map

$$
r: H^*_G(X) \to H^*(X).
$$

Proposition

Suppose that the map $r\colon H^*_G(X)\to H^*(X)$ is surjective. Then there is an isomorphism

 $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$

"This is a consequence of the Leray-Hirsch Theorem". In this case, we say that X is G-equivariantly formal.

御 ▶ す 君 ▶ す 君 ▶

For any G-spaces X, Y and a G-equivariant map $f : X \to Y$ (i.e. $f(g \cdot x) = g \cdot f(x)$, there is an induced map

 $f_G^*: H^*_G(Y) \to H^*_G(X).$

For any G-spaces X, Y and a G-equivariant map $f : X \to Y$ (i.e. $f(g \cdot x) = g \cdot f(x)$, there is an induced map

$$
f_G^*: H^*_G(Y) \to H^*_G(X).
$$

The constant map $X \rightarrow pt$ is G-equivariant and gives rise to a map

$$
p: H^*_G(pt) \to H^*_G(X).
$$

For any G-spaces X, Y and a G-equivariant map $f : X \to Y$ (i.e. $f(g \cdot x) = g \cdot f(x)$, there is an induced map

$$
f_G^*: H^*_G(Y) \to H^*_G(X).
$$

The constant map $X \rightarrow pt$ is G-equivariant and gives rise to a map

$$
\rho: H^*_G(pt) \to H^*_G(X).
$$

Since $pt_G \cong BG$, p induces a module structure on $H_G^*(X)$ over the ring $H^*(BG)$.

For any G-spaces X, Y and a G-equivariant map $f : X \to Y$ (i.e. $f(g \cdot x) = g \cdot f(x)$, there is an induced map

$$
f_G^*: H^*_G(Y) \to H^*_G(X).
$$

The constant map $X \rightarrow pt$ is G-equivariant and gives rise to a map

$$
\rho: H^*_G(pt) \to H^*_G(X).
$$

Since $pt_G \cong BG$, p induces a module structure on $H_G^*(X)$ over the ring $H^*(BG)$.

Remark

The map $f^*_G\colon H^*_G(Y)\to H^*_G(X)$ is a map of $H^*(BG)$ -modules.

AD ▶ ◀ ヨ ▶ ◀ ヨ ▶

Free modules

Remember:

Let M be a module over a ring R . We say that M is a free module, if there is an isomorphism $M\cong R^k$ for some $k\geq 1$.

Free modules

Remember:

Let M be a module over a ring R . We say that M is a free module, if there is an isomorphism $M\cong R^k$ for some $k\geq 1$.

If $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$, a k-basis of $H^*(X)$ induces a *R*-basis of $H^*_G(X)$ and thus $H^*_G(X)$ is a free *R*-module

Free modules

Remember:

Let M be a module over a ring R . We say that M is a free module, if there is an isomorphism $M\cong R^k$ for some $k\geq 1$.

If $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$, a k-basis of $H^*(X)$ induces a *R*-basis of $H^*_G(X)$ and thus $H^*_G(X)$ is a free *R*-module

Summary

- \textbf{D} The map $r\colon H^*_G(X)\to H^*(X)$ is surjective $(X$ is G-equivariantly formal).
- **•** There is an isomorphism $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$.
- **3** $H^*_G(X)$ is a free $H^*(BG)$ -module.

We know that $(1) \Rightarrow (2) \Rightarrow (3)$, but they are equivalent under extra assumptions (e.g. G connected).

★御き ★唐き ★唐

Comparing subgroups

Let $K \subset G$ be a subgroup. Then any G-space X becomes a K-space by restriction of the action.

If X is G-equivariantly formal then it is K-equivariantly formal.

$$
H_G^*(X) \stackrel{r_G}{\longrightarrow} H^*(X)
$$

$$
\downarrow \qquad \qquad r_K \nearrow
$$

$$
H_K^*(X)
$$

 Ω

Comparing subgroups

Let $K \subset G$ be a subgroup. Then any G-space X becomes a K-space by restriction of the action.

If X is G-equivariantly formal then it is K-equivariantly formal.

$$
H_G^*(X) \stackrel{r_G}{\longrightarrow} H^*(X)
$$

$$
\downarrow \qquad \qquad r_K \nearrow
$$

$$
H_K^*(X)
$$

Theorem [Allday - Hauschild - Puppe (2002)]

Let $G=S^1\times\cdots S^1=(S^1)^n$ and let X be a G -space. X is G-equivariantly formal if and only if it is K-equivariantly formal for any subgroup $K \cong S^1$.

つくい

Looking at torus actions

A torus $\mathcal T$ is a group homeomorphic to $(\mathcal S^1)^n$ for some $n\geq 1.$

 299

医间周的

Looking at torus actions

- A torus $\mathcal T$ is a group homeomorphic to $(\mathcal S^1)^n$ for some $n\geq 1.$
- $H^*(BT) = H^*((\mathbb{C}P^\infty)^n) \cong \Bbbk[t_1,\ldots,t_n]$ where $\deg(t_i) = 2$.
- Let G be a compact connected Lie group. It admits a maximal torus subgroup $T \subset G$

Assume \Bbbk is a field of characteristic θ .

Theorem [Hsiang (1975)]

Let X be a G-space where G is a compact connected Lie group. Denote by T a maximal torus of G . Then

- $H^*_T(X) \cong H^*_G(X) \otimes_{H^*(BG)} H^*(BT)$.
- \bullet X is G-equivariantly formal if and only if it is T-equivariantly formal.

AD ▶ ◀ ヨ ▶ ◀ ヨ ▶

The Betti number criterion

For a topological space X , denote its Betti sum by

$$
b(X)=\sum_{i\geq 0}\dim_kH^i(X).
$$

The Betti number criterion

For a topological space X , denote its Betti sum by

$$
b(X)=\sum_{i\geq 0}\dim_kH^i(X).
$$

Theorem (Borel. 1960)

Let T be a torus and X a T-space with $b(X) < \infty$. X is T-equivariantly formal if and only if $b(X) = b(X^T)$.

The Betti number criterion

For a topological space X , denote its Betti sum by

$$
b(X)=\sum_{i\geq 0}\dim_kH^i(X).
$$

Theorem (Borel. 1960)

Let T be a torus and X a T-space with $b(X) < \infty$. X is T-equivariantly formal if and only if $b(X) = b(X^T)$.

In particular, if the action of $\mathcal T$ on X is free, then $X^{\mathcal T}=\emptyset$ and then $H^*_{\mathcal{T}}(X)$ is NOT equivariantly formal.

つくい

Examples

Example

Recall S^2 with the rotation action of S^1 . It is S^1 -equivariantly formal as $b(S^2)=b(S^0)=2,$

$$
H_{\mathcal{S}^1}^*(S^2) \cong H^*(BS^1) \otimes H^*(S^2).
$$

The same idea applies to the action of S^1 on $S^3\subseteq \mathbb{C}^2$ given by $z\cdot(u,v)=(zu,v).$ Here $(S^3)^{S^1}\cong S^1$ and

$$
H^*_{S^1}(S^3)\cong H^*(BS^1)\otimes H^*(S^3)
$$

Examples

Example

Recall S^2 with the rotation action of S^1 . It is S^1 -equivariantly formal as $b(S^2)=b(S^0)=2,$

$$
H_{\mathcal{S}^1}^*(S^2) \cong H^*(BS^1) \otimes H^*(S^2).
$$

The same idea applies to the action of S^1 on $S^3\subseteq \mathbb{C}^2$ given by $z\cdot(u,v)=(zu,v).$ Here $(S^3)^{S^1}\cong S^1$ and $H_{\mathcal{S}^1}^*(S^3) \cong H^*(BS^1) \otimes H^*(S^3)$

Example

The Hopf fibration $S^1\to S^3\to S^2$ arises from a free action of S^1 on S^3 (This can be described as $\mathbb{C}P^1\cong S^3/S^1$). Then

$$
H^*_{S^1}(S^3)\cong H^*(S^2)
$$

A non-equivarianlty formal example

Example

Let X be the space obtained from S^2 by identifying the north and south poles.

 X is homotopy equivalent to a wedge of a sphere and a circle. Thus $b_0(X) = 1$, $b_1(X) = 1$, $b_2(X) = 1$ and so $b(X) = 3$. On the other hand, X^{S^1} consists of a single fixed point, then $b(X)=1$. Therefore, X is not equivariantly formal.

つくい

Involutions as group actions

Let $\tau: X \to X$ be an involution. Then X has an induced action of the group $G = \{id, \tau\} \cong \mathbb{Z}/2$. Conversely, any action of $\mathbb{Z}/2$ on X give rise to an involution on X .

 Ω

Involutions as group actions

Let $\tau: X \to X$ be an involution. Then X has an induced action of the group $G = \{id, \tau\} \cong \mathbb{Z}/2$. Conversely, any action of $\mathbb{Z}/2$ on X give rise to an involution on X .

Definition

A 2-torus is a group $G \cong (\mathbb{Z}/2)^n$ for some $n \geq 0$. If G acts on a space X, this is equivalent to X having *n*-commuting involutions.

Let \Bbbk be a field of characteristic 2 now.

Remark

For any 2-torus G, we have that

$$
H^*(BG) = H^*((\mathbb{R}P^\infty)^n) \cong \Bbbk[w_1,\ldots,w_n]
$$

where deg(w_i) = 1.

4母 ト 4目 ト

つくい

Comparing with the torus case

Betti sum criterion (Borel -1960)

Let G be a 2-torus and X a G-space with $b(X) < \infty$. X is G-equivariantly formal if and only if $b(X) = b(X^G)$.

Comparing with the torus case

Betti sum criterion (Borel -1960)

Let G be a 2-torus and X a G-space with $b(X) < \infty$. X is G-equivariantly formal if and only if $b(X) = b(X^G)$.

Equivariant formality is not captured by subgroups

There is a space X with an action of $G=\mathbb{Z}/2\times\mathbb{Z}/2$ such that X is not equivariantly formal, but it is with respect to every subgroup $K \subset G$, $K \cong \mathbb{Z}/2$.

Remark

Let $\mathcal{T}=(S^1)^n$ be a torus. Then the subgroup G consisting of those elements $g \in \mathcal{T}$ such that $g^2 = e$, is a 2-torus isomorphic to $(\mathbb{Z}/2)^n$.

つくい

Comparing with the torus case

Theorem [S. - Franz (2018)]

Let X be a space with an action of a torus T. Let $G\subseteq T$ be its 2-torus subgroup. Then

- $H^*_G(X) \cong H^*_T(X) \otimes_{H^*(BT)} H^*(BG).$
- \bullet X is T-equivariantly formal if and only if it is G-equivariantly formal.

Coefficients Matter

Let X be the "Croissant" space with the action of $S^1.$ Then $X^G \cong S^1 \vee S^1$ and thus $b(X^G) = b(X)$. This implies that X is T-equivariantly formal.

Using group cohomology

Remark

As G is a finite group, $H^*(BG) \cong H^*_{\text{grp}}(G)$. In particular, for a $\Bbbk[G]$ -module M.

$$
H^*(BG;M)\cong H^*_{\text{grp}}(G;M)
$$

Theorem

Let X be a space with an action of a 2-torus G. Then,

- $H^*_G(X) \cong H^*_{\text{grp}}(G; C^*(X)).$
- There is a homotopy equivalence

$$
C^*(X_G)\simeq Tot(H^*_{grp}(G)\otimes C^*(X))
$$

 X is G-equivariantly formal if and only if $H^*_G(X)$ is a free module over $H^*(BG)$.

References

A. Borel. Seminar on Transformation Groups. Ann of Math Stud, No 46. Princeton: Princeton Univ Press, (1960).

- W. Hsiang Cohomology Theory of Topological Transformation Groups Springer, (1975).
- C. Allday., V. Hauschild, and V. Puppe. A non-fixed point theorem for Hamiltonian Lie group actions. Transactions of the American Mathematical Society, 354(7), pp.2971-2982 , (2002).
- S., M. Franz. *Equivariant cohomology: The 2-torus case*. In preparation.