Equivariant Cohomology A topological and an algebraic approach.

Sergio Chaves

University of Western Ontario

44th Annual New York State Regional Graduate Mathematics Conference Syacuse University March 2019

Motivation

Let X be a topological space with a continuous action of a group G. (G-space for short)

- Is there an algebraic invariant of X that captures both the topology and the nature of the action?
- The singular cohomology $H^*(X)$ depends just on the topology of X.

Motivation

Let X be a topological space with a continuous action of a group G. (G-space for short)

- Is there an algebraic invariant of X that captures both the topology and the nature of the action?
- The singular cohomology $H^*(X)$ depends just on the topology of X.

How about the cohomology of the orbit space $H^*(X/G)$?

Motivation

Let X be a topological space with a continuous action of a group G. (G-space for short)

- Is there an algebraic invariant of X that captures both the topology and the nature of the action?
- The singular cohomology $H^*(X)$ depends just on the topology of X.

How about the cohomology of the orbit space $H^*(X/G)$?

Example

Let $X = S^2$ and $G = \mathbb{Z}/2$ be the antipodal action on X. Then $H^*(X/G) \cong H^*(\mathbb{R}P^2)$.

æ

・ロト ・四ト ・ヨト ・ヨト

æ

・ロト ・回ト ・ヨト ・ヨト

æ

Here, $H^*(X/G) \cong H^*(pt)$.

æ

≣ ▶

▶ ∢ ≣

Replace X by a G-space \tilde{X} where G acts freely and also $X \simeq \tilde{X}$.

Replace X by a G-space \tilde{X} where G acts freely and also $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely and consider $\tilde{X} = E \times X$.

Replace X by a G-space \tilde{X} where G acts freely and also $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely and consider $\tilde{X} = E \times X$.

Theorem

For any topological group G, there exist a unique (up to homotopy) contractible space EG with a free action of G.

Replace X by a G-space \tilde{X} where G acts freely and also $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely and consider $\tilde{X} = E \times X$.

Theorem

For any topological group G, there exist a unique (up to homotopy) contractible space EG with a free action of G.

The orbit space BG := EG/G is called *the classifying space of G*.

Replace X by a G-space \tilde{X} where G acts freely and also $X \simeq \tilde{X}$.

Keypoint: Find a contractible space E where G acts freely and consider $\tilde{X} = E \times X$.

Theorem

For any topological group G, there exist a unique (up to homotopy) contractible space EG with a free action of G.

The orbit space BG := EG/G is called *the classifying space of G*.

Example

• $G = S^1$, $EG = S^\infty$, $BG = \mathbb{C}P^\infty$.

•
$$G = \mathbb{Z}/2$$
, $EG = S^{\infty}$, $BG = \mathbb{R}P^{\infty}$.

• $G = \mathbb{Z}$, $EG = \mathbb{R}$, $BG = S^1$.

| 4 同 ト 4 ヨ ト 4 ヨ ト

Equivariant Cohomology

Definition (Seminar on transformation groups - A. Borel. 1960.)

For a *G*-space *X*, the Borel construction of *X* is the space $X_G = (EG \times X)/G$ and the *G*-equivariant cohomology of *X* is defined as

 $H^*_G(X) := H^*(X_G).$

Equivariant Cohomology

Definition (Seminar on transformation groups - A. Borel. 1960.)

For a *G*-space *X*, the Borel construction of *X* is the space $X_G = (EG \times X)/G$ and the *G*-equivariant cohomology of *X* is defined as

 $H^*_G(X) := H^*(X_G).$

Example

Let X = pt be the "single-point" space. Then $X_G = (EG \times pt)/G = EG/G \cong BG$. Therefore,

 $H^*_G(pt) = H^*(BG)$

If $G = S^1$, then $H^*_G(pt) = H^*(\mathbb{C}P^{\infty})$ is a polynomial ring in one variable.

伺 ト く ヨ ト く ヨ ト

Particular group actions

• If G acts on X trivially (i.e. $X^G = X$) we have

 $X_G \cong BG \times X$ and $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$.

Particular group actions

• If G acts on X trivially (i.e. $X^G = X$) we have

$$X_G \cong BG imes X$$
 and $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$.

In particular for any G-space X, G acts trivially on the fixed point subspace and then

$$H^*_G(X^G) \cong H^*(BG) \otimes H^*(X^G)$$

Particular group actions

• If G acts on X trivially (i.e. $X^G = X$) we have

$$X_G \cong BG imes X$$
 and $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$.

In particular for any G-space X, G acts trivially on the fixed point subspace and then

$$H^*_G(X^G) \cong H^*(BG) \otimes H^*(X^G)$$

• If G acts on X freely, we have

$$X_G \simeq X/G$$
 and $H^*_G(X) \cong H^*(X/G)$.

Equivariant Formality

For $z \in EG$, the inclusion of the fiber $i_z : X \to X_G$ given by $i_z(x) = [z, x]$ induces a map

$$r: H^*_G(X) \to H^*(X).$$

Proposition

Suppose that the map $r \colon H^*_G(X) \to H^*(X)$ is surjective. Then there is an isomorphism

 $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$

Equivariant Formality

For $z \in EG$, the inclusion of the fiber $i_z : X \to X_G$ given by $i_z(x) = [z, x]$ induces a map

$$r: H^*_G(X) \to H^*(X).$$

Proposition

Suppose that the map $r \colon H^*_G(X) \to H^*(X)$ is surjective. Then there is an isomorphism

$$H^*_G(X) \cong H^*(BG) \otimes H^*(X)$$

"This is a consequence of the Leray-Hirsch Theorem". In this case, we say that X is G-equivariantly formal.

A module structure on $\overline{H^*_G(X)}$

For any G-spaces X, Y and a G-equivariant map $f : X \to Y$ (i.e. $f(g \cdot x) = g \cdot f(x)$), there is an induced map

 $f_G^*: H_G^*(Y) \to H_G^*(X).$

A module structure on $H^*_G(X)$

For any G-spaces X, Y and a G-equivariant map $f : X \to Y$ (i.e. $f(g \cdot x) = g \cdot f(x)$), there is an induced map

$$f_G^*: H_G^*(Y) \to H_G^*(X).$$

The constant map $X \rightarrow pt$ is *G*-equivariant and gives rise to a map

$$p: H^*_G(pt) \to H^*_G(X).$$

A module structure on $H^*_G(X)$

For any G-spaces X, Y and a G-equivariant map $f : X \to Y$ (i.e. $f(g \cdot x) = g \cdot f(x)$), there is an induced map

$$f_G^*: H_G^*(Y) \to H_G^*(X).$$

The constant map $X \rightarrow pt$ is *G*-equivariant and gives rise to a map

$$p: H^*_G(pt) \to H^*_G(X).$$

Since $pt_G \cong BG$, p induces a module structure on $H^*_G(X)$ over the ring $H^*(BG)$.

A module structure on $H^*_G(X)$

For any G-spaces X, Y and a G-equivariant map $f : X \to Y$ (i.e. $f(g \cdot x) = g \cdot f(x)$), there is an induced map

$$f_G^*: H_G^*(Y) \to H_G^*(X).$$

The constant map $X \rightarrow pt$ is *G*-equivariant and gives rise to a map

$$p: H^*_G(pt) \to H^*_G(X).$$

Since $pt_G \cong BG$, p induces a module structure on $H^*_G(X)$ over the ring $H^*(BG)$.

Remark

The map $f_G^* \colon H^*_G(Y) \to H^*_G(X)$ is a map of $H^*(BG)$ -modules.

Free modules

Remember:

Let *M* be a module over a ring *R*. We say that *M* is a *free* module, if there is an isomorphism $M \cong R^k$ for some $k \ge 1$.

Free modules

Remember:

Let *M* be a module over a ring *R*. We say that *M* is a *free* module, if there is an isomorphism $M \cong R^k$ for some $k \ge 1$.

If $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$, a k-basis of $H^*(X)$ induces a *R*-basis of $H^*_G(X)$ and thus $H^*_G(X)$ is a free *R*-module

Free modules

Remember:

Let *M* be a module over a ring *R*. We say that *M* is a *free* module, if there is an isomorphism $M \cong R^k$ for some $k \ge 1$.

If $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$, a k-basis of $H^*(X)$ induces a *R*-basis of $H^*_G(X)$ and thus $H^*_G(X)$ is a free *R*-module

Summary

- The map $r: H^*_G(X) \to H^*(X)$ is surjective (X is G-equivariantly formal).
- **2** There is an isomorphism $H^*_G(X) \cong H^*(BG) \otimes H^*(X)$.
- $H^*_G(X)$ is a free $H^*(BG)$ -module.

We know that $(1) \Rightarrow (2) \Rightarrow (3)$, but they are equivalent under extra assumptions (e.g. *G* connected).

Comparing subgroups

Let $K \subseteq G$ be a subgroup. Then any *G*-space *X* becomes a *K*-space by restriction of the action.

If X is G-equivariantly formal then it is K-equivariantly formal.

$$\begin{array}{c} H^*_G(X) \xrightarrow{r_G} H^*(X) \\ \downarrow & \uparrow^{r_K} \\ H^*_K(X) \end{array}$$

Comparing subgroups

Let $K \subseteq G$ be a subgroup. Then any *G*-space *X* becomes a *K*-space by restriction of the action.

If X is G-equivariantly formal then it is K-equivariantly formal.

$$\begin{array}{c} H^*_G(X) \xrightarrow{r_G} H^*(X) \\ \downarrow & \stackrel{r_K}{\longrightarrow} \\ H^*_K(X) \end{array}$$

Theorem [Allday - Hauschild - Puppe (2002)]

Let $G = S^1 \times \cdots S^1 = (S^1)^n$ and let X be a G-space. X is G-equivariantly formal if and only if it is K-equivariantly formal for any subgroup $K \cong S^1$.

Looking at torus actions

• A torus T is a group homeomorphic to $(S^1)^n$ for some $n \ge 1$.

Looking at torus actions

- A torus T is a group homeomorphic to $(S^1)^n$ for some $n \ge 1$.
- $H^*(BT) = H^*((\mathbb{C}P^{\infty})^n) \cong \mathbb{K}[t_1, \ldots, t_n]$ where $\deg(t_i) = 2$.
- Let G be a compact connected Lie group. It admits a maximal torus subgroup $T \subseteq G$

Assume \Bbbk is a field of characteristic 0.

Theorem [Hsiang (1975)]

Let X be a G-space where G is a compact connected Lie group. Denote by T a maximal torus of G. Then

- $H^*_T(X) \cong H^*_G(X) \otimes_{H^*(BG)} H^*(BT).$
- X is G-equivariantly formal if and only if it is T-equivariantly formal.

• • = • • = •

The Betti number criterion

For a topological space X, denote its Betti sum by

$$b(X) = \sum_{i\geq 0} \dim_k H^i(X).$$

The Betti number criterion

For a topological space X, denote its Betti sum by

$$b(X) = \sum_{i\geq 0} \dim_k H^i(X).$$

Theorem (Borel. 1960)

Let T be a torus and X a T-space with $b(X) < \infty$. X is T-equivariantly formal if and only if $b(X) = b(X^T)$.

The Betti number criterion

For a topological space X, denote its Betti sum by

$$b(X) = \sum_{i\geq 0} \dim_k H^i(X).$$

Theorem (Borel. 1960)

Let T be a torus and X a T-space with $b(X) < \infty$. X is T-equivariantly formal if and only if $b(X) = b(X^T)$.

In particular, if the action of T on X is free, then $X^T = \emptyset$ and then $H^*_T(X)$ is NOT equivariantly formal.

Examples

Example

Recall S^2 with the rotation action of S^1 . It is S^1 -equivariantly formal as $b(S^2) = b(S^0) = 2$,

$$H^*_{S^1}(S^2) \cong H^*(BS^1) \otimes H^*(S^2).$$

The same idea applies to the action of S^1 on $S^3 \subseteq \mathbb{C}^2$ given by $z \cdot (u, v) = (zu, v)$. Here $(S^3)^{S^1} \cong S^1$ and

$$H^*_{S^1}(S^3) \cong H^*(BS^1) \otimes H^*(S^3)$$

Examples

Example

Recall S^2 with the rotation action of S^1 . It is S^1 -equivariantly formal as $b(S^2) = b(S^0) = 2$,

$$H^*_{S^1}(S^2) \cong H^*(BS^1) \otimes H^*(S^2).$$

The same idea applies to the action of S^1 on $S^3 \subseteq \mathbb{C}^2$ given by $z \cdot (u, v) = (zu, v)$. Here $(S^3)^{S^1} \cong S^1$ and $H^*_{s1}(S^3) \cong H^*(BS^1) \otimes H^*(S^3)$

Example

The Hopf fibration $S^1 \to S^3 \to S^2$ arises from a free action of S^1 on S^3 (This can be described as $\mathbb{C}P^1 \cong S^3/S^1$). Then

$$H^*_{S^1}(S^3) \cong H^*(S^2)$$

A non-equivarianlty formal example

Example

Let X be the space obtained from S^2 by identifying the north and south poles.

X is homotopy equivalent to a wedge of a sphere and a circle. Thus $b_0(X) = 1$, $b_1(X) = 1$, $b_2(X) = 1$ and so b(X) = 3. On the other hand, X^{S^1} consists of a single fixed point, then b(X) = 1. Therefore, X is not equivariantly formal.

Involutions as group actions

Let $\tau: X \to X$ be an involution. Then X has an induced action of the group $G = \{id, \tau\} \cong \mathbb{Z}/2$. Conversely, any action of $\mathbb{Z}/2$ on X give rise to an involution on X.

Involutions as group actions

Let $\tau: X \to X$ be an involution. Then X has an induced action of the group $G = \{id, \tau\} \cong \mathbb{Z}/2$. Conversely, any action of $\mathbb{Z}/2$ on X give rise to an involution on X.

Definition

A 2-torus is a group $G \cong (\mathbb{Z}/2)^n$ for some $n \ge 0$. If G acts on a space X, this is equivalent to X having *n*-commuting involutions.

Let \Bbbk be a field of characteristic 2 now.

Remark

For any 2-torus G, we have that

$$H^*(BG) = H^*((\mathbb{R}P^{\infty})^n) \cong \Bbbk[w_1, \ldots, w_n]$$

where $deg(w_i) = 1$.

A ≥ ►

Comparing with the torus case

Betti sum criterion (Borel -1960)

Let G be a 2-torus and X a G-space with $b(X) < \infty$. X is G-equivariantly formal if and only if $b(X) = b(X^G)$.

Comparing with the torus case

Betti sum criterion (Borel -1960)

Let G be a 2-torus and X a G-space with $b(X) < \infty$. X is G-equivariantly formal if and only if $b(X) = b(X^G)$.

Equivariant formality is not captured by subgroups

There is a space X with an action of $G = \mathbb{Z}/2 \times \mathbb{Z}/2$ such that X is not equivariantly formal, but it is with respect to every subgroup $K \subseteq G$, $K \cong \mathbb{Z}/2$.

Remark

Let $T = (S^1)^n$ be a torus. Then the subgroup G consisting of those elements $g \in T$ such that $g^2 = e$, is a 2-torus isomorphic to $(\mathbb{Z}/2)^n$.

Comparing with the torus case

Theorem [S. - Franz (2018)]

Let X be a space with an action of a torus T. Let $G \subseteq T$ be its 2-torus subgroup. Then

- $H^*_G(X) \cong H^*_T(X) \otimes_{H^*(BT)} H^*(BG).$
- X is T-equivariantly formal if and only if it is G-equivariantly formal.

Coefficients Matter

Let X be the "Croissant" space with the action of S^1 . Then $X^G \cong S^1 \vee S^1$ and thus $b(X^G) = b(X)$. This implies that X is *T*-equivariantly formal.

Using group cohomology

Remark

As G is a finite group, $H^*(BG) \cong H^*_{grp}(G)$. In particular, for a $\Bbbk[G]$ -module M.

$$H^*(BG; M) \cong H^*_{grp}(G; M)$$

Theorem

Let X be a space with an action of a 2-torus G. Then,

- $H^*_G(X) \cong H^*_{grp}(G; C^*(X)).$
- There is a homotopy equivalence

$$C^*(X_G) \simeq Tot(H^*_{grp}(G) \otimes C^*(X))$$

• X is G-equivariantly formal if and only if $H^*_G(X)$ is a free module over $H^*(BG)$.

References

💊 A. Borel. *Seminar on Transformation Groups*. Ann of Math Stud, No 46. Princeton: Princeton Univ Press, (1960).

- 💊 W. Hsiang Cohomology Theory of Topological Transformation Groups Springer, (1975).
- 💊 C. Allday., V. Hauschild, and V. Puppe. A non-fixed point theorem for Hamiltonian Lie group actions. Transactions of the American Mathematical Society, 354(7), pp.2971-2982, (2002).
- 💊 S. , M. Franz. Equivariant cohomology: The 2-torus case. In preparation.