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Following [Borel, 1960], let G be topological group, EG → BG a universal principal bundle for G and let
X be a topological space with a continuous action of G, or a G-space. The equivariant cohomology of X,
denoted by H∗G(X; R), is the cohomology of H∗(XG; R) where XG = (X × EG)/G is the Borel construction of
X. This object inherits a canonical structure as a module over H∗(BG; R). We say that X is G-equivariantly
formal if H∗G(X; R) is a free module over H∗(BG; R).

1 Equivariant cohomology for the real locus of symplectic manifolds

The G-equivariant cohomology of a G-space X is closely related to the topology of its fixed point set XG. This
situation has appeared in more specific contexts such as the cohomology of compact symplectic manifolds; in
fact, following Atiyah [Atiyah, 1982, Thm. 1], and extending Frankel’s results in Kähler manifolds [Frankel,
1959, §4]. we cite the following theorem.

Theorem 1.1. Let M be a compact symplectic manifold with a Hamiltonian action of a torus T . Then there
is an additive isomorphism

H∗(M; k) �
m⊕

i=1

H∗−di (Fi; k)

where Fi, i = 1, . . . , n are the connected components of MT , di is the Bott-Morse index of Fi; that is, di is
the number of negative eigenvalues of the Hessian matrix associated to the critical submanifold Fi under the
Morse-Bott function f = ‖µ‖2. Here µ denotes the moment map associated to the torus action.

This isomorphism is actually extended to the case of T -equivariant cohomology; namely,

H∗T (M;R) �
N⊕

i=1

H∗−di
T (Fi;R) (1.1.1)

as shown by Kirwan in [Kirwan, 1984, §5] following Atiyah-Bott [Atiyah and Bott, 1984, Thm. 3.5]. In
particular, Theorem 1.1 implies that the Betti sum of M and MT are the same and it follows that M is T -
equivariantly formal over R.

Motivated by the case where M is a complex projective space and the complex conjugation τ : M → M is an
anti-symplectic involution (i.e. τ∗ω = −ω, where ω denotes the symplectic form of M) and compatible with
the torus action, Duistermaat [Duistermaat, 1983, Thm. 3.1] proved an analogous version of Theorem 1.1 for
the fixed point subspace Mτ, commonly known as the Real Locus of M.
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Theorem 1.2. Let (M, ω) be a symplectic manifold with a Hamiltonian action of a torus T and a compatible
anti-symplectic involution τ. There is an additive isomorphism

H∗(Mτ;F2) =

N⊕
i=1

H∗−
di
2 (Fτ

i ;F2)

and b(Mτ) = b(Mτ ∩ MT ), where MT =

m⋃
i=1

Fi.

Furthermore, in [Biss et al., 2004, Thm. A], an equivariant version of Theorem 1.2 was proved by Biss-
Guillemin-Holm. Explicitly, the action of T on M induces an action of the subgroup T2 = {g ∈ T : g2 = 1}
on Mτ and the equivariant cohomology satisfies,

H∗T2
(Mτ;F2) �

N⊕
i=1

H∗−
di
2

T2
(Fτ

i ;F2) (1.2.1)

as H∗(BT2;F2)-modules. They also showed that b(Mτ) = b(Mτ∩MT2 ) = b((Mτ)T2 ). In particular, this implies
that Mτ is T2-eqivariantly formal over F2.

Remark 1.3. When M is a symplectic manifold with a Hamiltonian action of a torus T and a compatible
anti-symplectic involution τ, similar to Chapter 4, we have an induced action of G = T o Z/2 and MG =

(Mτ)T = Mτ ∩ MT .

Now we are interested in relating the T -equivariant cohomology of M with the T2-equivariant cohomology
of Mτ. First, it can be shown that a symplectic manifold M with an action of a torus T is equivariantly formal
if and only if the T -action is Hamiltonian (see Corollary 2.7 below); therefore, combining Theorems 1.1, 1.2
and 1.2.1 we can state the following theorem.

Theorem 1.4. Let M be a symplectic manifold with an action of a torus T and a compatible involution τ. If
M is T-equivariantly formal over R, then the real locus Mτ is T2-equivariantly formal over F2.

If M is a complex projective space, we have that M satisfies Theorem 1.4 and also b(M) and b(Mτ) have the
same Betti sum; this implies that M is also τ-equivariantly formal. However, the next example exhibits a
symplectic manifold M where Theorem 1.4 applies, but M is not τ-equivariantly formal.

Example 1.5. Consider the symplectic manifold (S 2, ω) where ω ∈ H2(S 2) is a generator. Let T = S 1 act
on S 2 as the rotation along the z-axis, set (M, γ) = (S 2 × S 2, p∗1ω− p∗2ω) where pi : M → S 2 is the projection
onto the i-th factor. Let τ : M → M be the involution given by τ(x, y) = (y, x), then τ is an anti-symplectic
involution; and consider the action of T on M given by g · (x, y) = (g · x, g−1 · y), the action is compatible with
the involution and therefore, from Theorems 1.1 and 1.2, H∗T (M;R) is free over H∗(BT ;R) and H∗T2

(Y;F2) is
free over H∗(BT2;F2) where Y = Mτ � S 2 and T2 is the 2-torus in T . This also follows from the Betti sum
criteria; namely, MT consist of 4-points, and thus b(M) = b(MT ) = 4. Also, YT2 consists of two points and
thus b(Y) = b(YT2 ) = 2; however, b(Y) < b(M) and thus the equivariant cohomology H∗Z/2(M;F2) is not free
over H∗(BZ/2;F2) where the action of Z/2 on M is the one given by the involution τ.

On the other hand, we immediately have a condition for M being τ-equivariantly formal.

Proposition 1.6. Let M be a symplectic manifold with a Hamiltonian action of a torus T and a anti-
symplectic involution τ. Then M is τ-equivariantly formal over F2 if and only if b(M) = b(MH) where H
is the 2-subtorus in G = T o Z/2. The latter acts on M via the induced action of T and τ.
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By Proposition 1.6, it is enough to assume that X is T -equivariantly formal for Xτ to be T2-equivariantly
formal in the symplectic setting. Now in the most general possible case, we have the following question.

Question 1.7. Let X be a T-space together with a compatible involution τ. Assume that b(X) < ∞ and
H∗T (X;F2) is a free H∗(BT ;F2)-module. Is H∗T2

(Xτ;F2) a free H∗(BT2;F2)- module where the action of the
2-torus T2 ⊆ T on Xτ is the one induced by the action of T on X ?

Without extra assumptions on the space, a negative answer can be given as we will describe in the next
proposition.

Proposition 1.8. There exists a manifold X with an action of T = S 1 and a compatible involution τ such
that X is T-equivariantly formal and the real locus Xτ is not equivariantly formal with respect to the induced
action of the 2-torus subgroup T2 ⊆ T.

Proof. let X = {(u, z) ∈ C×R : |u|2 + |z|2 = 1} = S 2, let T = S 1 act on X by g · (u, z) = (gu, z); more precisely,
by scalar multiplication in the first factor. Let τ be the involution τ(u, z) = (ū,−z) which is compatible with
the torus action. Notice that XT = {(0, 1), (0,−1)} � S 0 and Xτ = {(−1, 0), (1, 0)} � S 0. Therefore, the action
of T2 on Xτ is the multiplication by ±1 and thus it is a free T2-space, this implies that its T2-equivariant
cohomology is not free over H∗(BT2). On the other hand, H∗T (X) is a free H∗(BT )-module since X and XT

have the same Betti sum. �

One of the main issues of this example is that XG = ∅, even assuming XG , ∅ a counterexample of question
1.7 can be found and its construction is motivated by [Su, 1964, Sec. 5]. First we recall the following well
known construction of topological spaces.

Definition 1.9. Let f : X → Y be a G-map between G-spaces X and Y . The mapping cylinder is defined
as the G-space M f = (X × [0, 1]) t Y/ ∼ where (x, 1) ∼ f (x), with the action given by g · (x, t) = (gx, t) for
(x, t) ∈ X× [0, 1] and the regular action on Y; notice that it is well defined at the points of the form (x, 1) since
f is a G-map.

The space M f is G-homotopic to Y , and therefore H∗(M f ) � H∗(Y). Also, the fixed point subspace (M f )G �
M f G where f G : XG → YG. Now let g : X → Z be a G-map and Mg the respective mapping cylinder, then the
space M f ,g = M f ∪X×{0} Mg has cohomology groups fitting in the long exact sequence

0→ H0(M f ,g)→ H0(Y) ⊕ H0(Z)→ H0(X)→ H1(M f ,g)→ · · ·

following from the Mayer-Vietoris long exact sequence. Moreover, M f ,g becomes a G-space and (M f ,g)G �
M f G ,gG . In particular, we have

Proposition 1.10. Let m, n, r be different integers, h : S m → S n a map between spheres and consider
f = h × id : S m × S r → S n × S r and g : S m × S r → S m the projection. Then H∗(M f ,g) is free over Z/2 where
a copy of Z/2 happens in degree 0, n,m + r + 1, n + r and it is zero otherwise. In particular, b(M f ,g) = 4.

Example 1.11. Let X = S 3 ⊆ C2, Y = S 5 ⊆ C3 and Z = S 9 ⊆ C4. Let T = S 1 act on X and Y by scalar
multiplication on the first component , respectively, and let T act on Z by scalar multiplication on the first
and second component and trivially otherwise. Then XT = S 1, YT = S 3 and ZT = S 5. Let τ act on X and Y
as the complex conjugation on the first component respectively, and on Z as the complex conjugation on the
first and second component and multiplication by −1 on the other components. Then Xτ = S 2, Yτ = S 4 and
Zτ = S 1. Note that the induced action of T2 ⊆ T is free on Zτ.

Let f : X × Z → Y × Z be the map i × id where i is the inclusion i(u, z) = (u, z, 0), and g : X × Z → X
the projection. Consider the T -space M = M f ,g and the induced action of τ on M becomes a compatible
involution. Then b(M) = b(MT ) = b(Mτ) = 4 from Proposition 1.10, but b(MG) = b((Mτ)T2 ) = 2.

3



Example 1.12. Let X = S 3 , Y = S 2 and h : X → Y be the Hopf map. This map can be explicitly presented
as h(u, z) = (2uz̄, |u|2 − |z|2) where S 3 is seen as the unit sphere in C2 and S 2 as the unit sphere in C × R.
Let T = S 1 act on S 3 and S 2 as the complex multiplication in the first component respectively, and τ be
the involution on S 3 and S 2 given by the complex conjugation in the first component respectively. Then τ is
compatible with the torus action and XT � S 1, Xτ � S 2, YT � S 0 and Yτ � S 1. Now let Z = S 5 be the unit
sphere in C3, let T act on Z by multiplication in the first component and τ be the involution on Z given by
the complex conjugation in the first component, and multiplication by −1 in the second and third component;
then ZT � S 3 and Zτ � S 0, notice that the action of the 2-torus T2 ⊆ T on Zτ is free.

Let M = M f ,g be the construction of Proposition 1.10 , then b(M) = b(MT ) = b(Mτ) = 4 and thus M is
T -equivariantly formal; nevertheless, Mτ is not T2-equivariantly formal since b((Mτ)T2 ) = 2 < b(Mτ).

These examples provide a negative solution for Question 1.7 with non-empty common fixed points of both T
and τ. Summarizing we get.

Proposition 1.13. There is a topological space M with an action of a torus T and a compatible involution τ
such that MG , ∅, M is T-equivariantly formal and Z/2-equivariantly formal, but the real locus Mτ is not
T2-equivariantly formal with respect to the induced action of the 2-torus T2 ⊆ T on Mτ. �

2 Cohomologically symplectic spaces

Definition 2.1. Let M be a k-Poincare duality space with formal dimension 2n. We say that M is a c-
symplectic space (cohomologically symplectic), if there is a class ω ∈ H2(M; k) such that ωn , 0.

Notice that any compact symplectic manifold is a c-symplectic space; however, there exists c-symplectic
spaces which do not admit a symplectic structure. For instance, the connected sum CP2#CP2 is c-symplectic
but it does not admit a symplectic form [Audin, 1991, Prop 1.3.1].

Definition 2.2. A c-symplectic space M satisfies the weak Lefschetz condition if the multiplication by ωn−1

induces an isomorphism H1(M; k) � H2n−1(M; k). Moreover, if the multiplication by ωr induces an isomor-
phism Hn−r(M; k) � Hn+r(M; k) for r = 1, . . . , n − 1. we say that M satisfies the strong Lefschetz condition.
Since any Kähler manifold satisfies the strong Lefschetz condition, we define analogously the cohomological
version. More precisely, a c-symplectic space satisfying the strong Lefschetz condition is called a c-Kähler
(cohomologically-Kähler) space.

An important property of the c-Kähler spaces is a condition over its Betti numbers, as we remark in the
following result.

Proposition 2.3. Let M be a c-Kähler space, then the odd Betti numbers b2k+1(M) are even.

Proof. Let s = 2k + 1. From a standard result in symplectic linear algebra, it is enough to show that Hs(M)
admits a non-degenerate skew-symmetric bilinear form. Let 1 ≤ r ≤ n− 1 be such that s = n + r or s = n− r,
assume without loss of generality the latter. Consider the isomorphism φ : Hs(M) → H2n−s(M) given
by multiplication by ωr from the strong Lefschetz condition. Consider the non degenerate pairing given by
Poincaré duality µ : Hs(M)×H2n−s(M)→ k. Then the bilinear form on Hs(M) given by Ω(a, b) = µ(a, φ−1(b))
is a non-degenerate skew-symmetric form and thus Hs(M) is an even-dimensional vector space. �

Definition 2.4. Let G be a torus if k = Q or a p-torus if k = Fp. An action of G on M is said to be
c-Hamiltonian (cohomologically Hamiltonian) if ω ∈ Im(i∗ : H∗G(M; k)→ H∗(M; k)).
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Proposition 2.5. Let M be a c-symplectic space with an action of a torus T . Assume that M satisfies the
weak Lefschetz condition and that MT , ∅, then the action is c-Hamiltonian.

Proof. We can assume that T is a circle. Consider the spectral sequence associated to the fibration M →

MT → BT , write d2(ω) = x · c ∈ H1(M) ⊗ H2(BT ) where c ∈ H2(BT ) is a generator. Since M is a Poincare
duality space and MT , ∅, ωn ∈ Im(H∗T (M) → H∗(M)) and thus 0 = d2(ωn) = nωn−1x · c. From the weak
Lefschetz condition we get that x = 0 and so d2(ω) = 0. Since this is the only possible non-zero differential
on ω, we get ω ∈ Im(H∗T (M)→ H∗(M)). �

In the case of symplectic manifolds, the Hamiltonian torus action and c-Hamiltonian torus action are the
same. This can be shown using the Cartan model for equivariant cohomology. [Mukherjee, 2005, Prop.
1.5.6]

Theorem 2.6. Let M be a symplectic manifold with an action of a torus T . The action is Hamiltonian if and
only if it is c-Hamiltonian.

From Theorem 1.1 we get that a Hamiltonian torus action is equivariantly formal. On the other hand, if
M is T -equivariantly formal, the map H∗T (M) → H∗(M) is surjective and thus the action is c-Hamiltonian.
Therefore, from 2.6 we obtain the following result.

Corollary 2.7. Let M be a symplectic manifold with an action of a torus T . The action is Hamiltonian if and
only if M is T-equivariantly formal.

The following lemma, whose proof requires standard results in algebraic top logy, will allow us to construct
further examples.

Lemma 2.8.

(a) Let M and N be connected k-orientable manifolds of the same dimension n. Then bi(M#N) � bi(M) +

bi(N) for i , 0, n and b0(M) = bn(M) = 1.

(b) Let M be a connected manifold of dimension n ≥ 2. Denote by M̃ the manifold obtained by “attaching a
handle” on M; more precisely, remove two open sets U,V � Dn of M and then glue a cylinder S n−1 × I
along the common boundary S n−1 t S n−1. Then , bi(M̃) = bi(M̃) for i , n − 1, 1; moreover, when n > 2
we have that b j(M̃) = b j(M) + 1 for j = 1, n − 1 and if n = 2 we have b1(M̃) = b1(M) + 2.

Proof. Let C denote the gluing cylinder in both cases. To prove (a), observe that collapsing C into a point
we get an isomorphism H∗(M#N,C) � H∗((M#N)/C,C) � H̃∗(M ∨ N). Using the cohomology long exact
sequence for the pair (M#N,C) and that H∗(C) = H∗(S n−1) we have immediately that H̃i(M#N) � H̃i(M∨N)
for i , n, n − 1. To compute the remaining degrees, we look at the short exact sequence

0→ Hn−1(M ∨ N)→ Hn−1(M#N)→ Hn−1(S n−1)→ Hn(M ∨ N)→ Hn(M#N)→ 0

where the map Hn(M ∨ N) → Hn(M#N) coincides with the surjective map k ⊗ k → k as M, N and M#N
are k-orientable and thus Hn−1(M ∨ N) � Hn−1(M#N). To prove (b) we use the Mayer-Vietoris long exact
sequence. We write M̃ = N ∪ S where N is homeomorphic to M with two discs removed U and V , and
S � S n−1; also we have that the intersection N ∩ S � S n−1 t S n−1. Therefore, the Mayer-Vietoris long exact
sequence yields

0→ k→ H1(M̃)→ H1(N) ⊕ H1(S n−1)→ H1(S n−1) ⊕ H1(S n−1)→ · · ·

· · · → Hn−1(M̃)→ Hn−1(N) ⊕ Hn−1(S n−1)→ Hn−1(S n−1) ⊕ Hn−1(S n−1)
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→ Hn(M̃)→ Hn(N)→ 0

Therefore, bi(M̃) = bi(N) for i , 1, b1(M̃) = b1(N) + 1 and bn(M̃) = 1. It only remains to compute the Betti
numbers of N. To do so, we use again the Mayer-Vietoris sequence for the decomposition M = N ∪W where
W = U∪V � DntDn. In this case, the sequence give us bi(N) = bi(M) for i , n−1, n, bn−1(N) = bn−1(M)+1
and bn(N) = 0. The statement of the lemma follows by combining the results from the two sequences
discussed above. �

If M is a c-symplectic space which is T -equivariantly formal, then the action is automatically c-Hamiltonian.
However, if M admits a c-Hamiltonian action of a torus T , it is not necessarily T -equivariantly formal; as we
state in the following proposition.

Proposition 2.9 (C. Allday [Allday, 1998]). There exist a c-symplectic space M satisfying the weak Lef-
schetz condition together with a c-Hamiltonian action of a circle T and b(MT ) < b(M). Thus M is not
T-equivariantly formal.

Proof. Let T = S 1 act freely on X = S 3 × S 3. By the equivariant tubular neighborhood consider a tube
U = S 1 × D5 around an orbit where T acts by multiplication on the first factor. Remove the interior of the
tube and glue D2 × S 4, where T acts by rotations on the first factor. Call the resulting manifold N, then
N is a T -space where NT = S 4. Using the Mayer-Vietoris long exact sequence, we obtain that the Betti
numbers of H∗(N;Q) are 1, 0, 1, 2, 1, 0, 1 in degree 0, 1, . . . , 6 respectively; in fact, let N0 = X \ U which
is homeomorphic to S 3 × S 3 with an orbit removed around a chosen point. Let V � S 1 × D5 be such that
X = N0 ∪ V and N0 ∩ V � S 1 × (D5 \ {0}) which has the homotopy type of S 1 × S 4. Applying the Mayer-
Vietoris long exact sequence for such decomposition we get that H∗(N0) has dimension 1, 0, 0, 2, 1, 0, 0 in
degree 0, 1, . . . , 6 respectively. Now, N is constructed by gluing N0 and D2 × S 4 along the common boundary
S 1 × S 4, this provides a decomposition of N into open sets U ⊆ V such that U � N0, V � S 4, U ∪V = N and
U ∩ V � S 1 × S 4. From the Mayer-Vietoris long exact sequence the Betti numbers of H∗(N;Q) are the ones
stated above.

Now let T act on CP3 by g·[z0 : z1 : z2 : z3] = [gz0 : z1 : z2 : z3], so the fixed point subspace is homeomorphic
to ptCP2 where p = [1 : 0 : 0 : 0]. Let M = N#CP3 be the equivariant connected sum formed by removing
T -invariant discs around fixed points of p ∈ NT = S 4 ⊆ N and y ∈ (CP3)T = CP2 ⊆ CP3; the existence
of the T -invariant discs follows from the Equivariant tubular neighborhood theorem (Theorem ??). This
implies then that b(M) = 8. Notice that MG � p ∪ (S 4#CP2) � p ∪ CP2; moreover, the non-trivial form
ω ∈ H2(CP3;Q) induces a non trivial form ω̃ ∈ H2(M;Q) such that ω̃3 , 0, so M is a c-symplectic space.
Moreover, since CP3 is T -equivariantly formal, the lifting of the class ω to H∗T (CP3;Q) induces a lifting of ω̃
to H∗T (M;Q) and thus the action of T on M is c-Hamiltonian. However, since b(MT ) = 4 < b(M) = 8, M is
not T -equivariantly formal and therefore Theorem 1.1 does not hold in the case of c-symplectic spaces. �

Even though we may consider formal Hamiltonian torus action on c-symplectic spaces, Question 1.7 in the
setting of c-symplectic spaces does not have a positive solution. The example will be constructed in a similar
fashion as in Proposition 2.9.

Proposition 2.10. There exists a c-symplectic space M with a torus action of T and a compatible c-antisymplectic
involution τ such that M is T-equivariantly formal over Q and the real locus Mτ is not equivariantly formal
over F2 with respect to the induced action of the 2-torus subgroup T2 ⊆ T.

Proof. Let T = S 1, consider the T -action on S 3 ⊆ C×C given by g·(u, z) = (gu, z) and the involution τ defined
as τ(u, z) = (ū,−z), then τ is compatible with the T -action and we have an induced action of G = T o Z/2;

6



moreover, (S 3)T � S 1 ⊆ {0} ×C and (S 3)τ � S 0 ⊆ C × {0}. Let X = S 3 × S 3 be the G-space with the induced
diagonal action, let Y = CP3 be the G-space with the action given by g · [z0 : z1 : z2 : z3] = [gz0 : gz1 : z2 : z3]
for g ∈ T and the involution τ defined as the complex conjugation, then XT � S 1 × S 1, Xτ � S 0 × S 0,
YT � CP1tCP1, Yτ � RP3. Notice that the induced T2 � Z/2-action on Xτ is free while (Yτ)T2 � RP1tRP1.

Choose points x ∈ XT \ Xτ and y ∈ YT \ Yτ, then the orbit spaces G · x � G · y consist of two points and
the stabilizers Gx � Gy � T . By the equivariant tubular neighborhood theorem (Theorem ??), there exist
U ⊆ X, V ⊆ Y G-invariant neighborhoods of x and y respectively such that U � V � D6 × Z/2, T acts by
scalar multiplication on the complex components of D6 ⊆ (C × R)2 and τ is the complex conjugation on D6

on the complex components, and multiplication by −1 on the real components and the Z/2 factor. Let M be
the space obtained as “a double connected sum” by removing U and V from X and Y respectively and gluing
the spaces X \ U and Y \ V along a double cylinder I × S 5 × Z/2 where G acts trivially on the unit interval
I and on S 5 × Z/2 as the restriction of the action on the boundary of D6 × Z/2 described above. Note that
M can be obtained by attaching a handle to the connected sum X#Y . Therefore, from Lemma 2.8, the Betti
numbers of M are 1, 1, 1, 2, 1, 1, 1 in degree 0, 1, . . . , 6 respectively and thus b(M) = 8. We have also that
MT � M0 tCP1 where M0 is homeomorphic to a “double connected sum” between S 1 × S 1 and CP1, which
is indeed homeomorphic to a genus 2 surface. Therefore, b(MT ) = b(M0) + b(CP1) = 6 + 2 = 8 so M is
a T equivariantly formal space. Moreover, the symplectic form Ω ∈ H2(CP3) induces a c-symplectic form
ω ∈ H2(M) which admits an equivariant lifting ω̃ ∈ H2

T (M) and thus the action of T on M is c-Hamiltonian.
On the other hand, Mτ � (S 0 × S 0) t RP3 and thus b(Mτ) = 4 + 4 = 8; however, (Mτ)T2 � RP1 t RP1 and
b((Mτ)T2 ) = 4, that is, Mτ is not equivariantly formal with respect to the T2-action. �

This example is a c-symplectic space which does not satisfy the weak Lefschetz condition, that is, the mul-
tiplication by ω2 : H1(M) → H5(M) is clearly zero. Indeed, since H3(M) is generated by the elements
a, b ∈ H3(S 3×S 3) and in the cohomology of the connected sum H∗(S 3×S 3#CP3) we have that a·ω = b·ω = 0,
the same equation holds in the cohomology H∗(M). This implies that for the generator x ∈ H1(M) we have
x · ω = λ1a + λ2b for some λ1, λ2 ∈ {0, 1} and thus x · ω2 = 0.

In the case of c-Kähler spaces, any torus action with non empty fixed points is formal and thus c-Hamiltonian.
This follows from this stronger result due to A. Blanchard [Blanchard, 1956, Thm. II.1.2].

Theorem 2.11. Let X be c-Kähler space (over a field k) and X → E → B be a fiber bundle. Consider
cohomology with coefficients over a field k. Suppose that π1(B) acts trivially in the cohomology H∗(F), then
the Serre spectral sequence collapses and

H∗(E) � H∗(B) ⊗ H∗(X).

As an immediate result, for any connected group K acting on X, if the fixed point subspace XK , ∅, X is
K-equivariantly formal. Now we can prove Duistermaat’s theorem in the case of c-Kähler spaces.

Proposition 2.12. Let X be a c-Kähler space (over k = F2) with an action of a torus T an a compatible
anti-symplectic involution τ. Assume that τ acts trivially in the cohomology of X. Then X is T-equivariantly
formal over k and the real locus Xτ is T2 equivariantly formal over k.

Proof. From Blanchard’s result, we have that X is T -equivariantly formal over k. This implies that it is also
T2-equivariantly formal by Corollary ?? and so T2 acts trivially on the cohomology of X. By assumption, τ
acts trivially on the cohomology of X as well and thus the group H = T2 × τ acts trivially in the cohomology
of X. Using again Theorem 2.11 we obtain that X is H-equivariantly formal. Finally, the T2-equivariant
formality of the real locus Xτ follows from Theorem ??. �
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