Equivariant cohomology for c-symplectic spaces

Sergio Chaves

November 6, 2019

Following [\[Borel, 1960\]](#page-7-0), let *G* be topological group, $EG \rightarrow BG$ a universal principal bundle for *G* and let *X* be a topological space with a continuous action of *G*, or a *G-space*. The equivariant cohomology of *X*, denoted by $H_G^*(X; R)$, is the cohomology of $H^*(X_G; R)$ where $X_G = (X \times EG)/G$ is the Borel construction of Y . This object inherits a canonical structure as a module over $H^*(RG; R)$. We say that Y is *G*-equivariantly *X*. This object inherits a canonical structure as a module over *H* ∗ (*BG*; *R*). We say that *X* is *G*-equivariantly formal if $H^*_G(X; R)$ is a free module over $H^*(BG; R)$.

1 Equivariant cohomology for the real locus of symplectic manifolds

The *G*-equivariant cohomology of a *G*-space *X* is closely related to the topology of its fixed point set *X ^G*. This situation has appeared in more specific contexts such as the cohomology of compact symplectic manifolds; in fact, following Atiyah [\[Atiyah, 1982,](#page-7-1) Thm. 1], and extending Frankel's results in Kähler manifolds [[Frankel,](#page-7-2) [1959,](#page-7-2) §4]. we cite the following theorem.

Theorem 1.1. *Let M be a compact symplectic manifold with a Hamiltonian action of a torus T. Then there is an additive isomorphism*

$$
H^*(M;k) \cong \bigoplus_{i=1}^m H^{*-d_i}(F_i;k)
$$

where F_i , $i = 1, \ldots, n$ are the connected components of M^T , d_i is the Bott-Morse index of F_i ; that is, d_i is the number of peactive eigenvalues of the Hessian matrix associated to the critical submanifold F_i *the number of negative eigenvalues of the Hessian matrix associated to the critical submanifold Fⁱ under the* Morse-Bott function $f = ||\mu||^2$. Here μ denotes the moment map associated to the torus action.

This isomorphism is actually extended to the case of *T*-equivariant cohomology; namely,

$$
H_T^*(M; \mathbb{R}) \cong \bigoplus_{i=1}^N H_T^{*-d_i}(F_i; \mathbb{R})
$$
\n(1.1.1)

as shown by Kirwan in [\[Kirwan, 1984,](#page-7-3) §5] following Atiyah-Bott [\[Atiyah and Bott, 1984,](#page-7-4) Thm. 3.5]. In particular, Theorem [1.1](#page-0-0) implies that the Betti sum of *M* and *M^T* are the same and it follows that *M* is *T*equivariantly formal over R.

Motivated by the case where *M* is a complex projective space and the complex conjugation $\tau : M \to M$ is an anti-symplectic involution (i.e. $\tau^* \omega = -\omega$, where ω denotes the symplectic form of *M*) and compatible with
the torus action. Duistermaat [Duistermaat, 1983, Thm, 3, 1] proved an analogous version of Theorem 1, 1 fo the torus action, Duistermaat [\[Duistermaat, 1983,](#page-7-5) Thm. 3.1] proved an analogous version of Theorem [1.1](#page-0-0) for the fixed point subspace *M*^τ , commonly known as the *Real Locus of M*.

Theorem 1.2. *Let* (M, ω) *be a symplectic manifold with a Hamiltonian action of a torus T and a compatible anti-symplectic involution* τ*. There is an additive isomorphism*

$$
H^*(M^\tau;\mathbb{F}_2) = \bigoplus_{i=1}^N H^{*- \frac{d_i}{2}}(F_i^\tau;\mathbb{F}_2)
$$

 and $b(M^{\tau}) = b(M^{\tau} \cap M^T)$ *, where* $M^T = \binom{m}{m}$ *i*=1 *Fi .*

Furthermore, in [\[Biss et al., 2004,](#page-7-6) Thm. A], an equivariant version of Theorem [1.2](#page-1-0) was proved by Biss-Guillemin-Holm. Explicitly, the action of *T* on *M* induces an action of the subgroup $T_2 = \{g \in T : g^2 = 1\}$ on M^{τ} and the equivariant cohomology satisfies,

$$
H_{T_2}^*(M^{\tau}; \mathbb{F}_2) \cong \bigoplus_{i=1}^N H_{T_2}^{* - \frac{d_i}{2}}(F_i^{\tau}; \mathbb{F}_2)
$$
\n(1.2.1)

as $H^*(BT_2; \mathbb{F}_2)$ -modules. They also showed that $b(M^{\tau}) = b(M^{\tau} \cap M^{T_2}) = b((M^{\tau})^{T_2})$. In particular, this implies that M^{τ} is T_2 -eqivariantly formal over \mathbb{F}_2 .

Remark 1.3*.* When *M* is a symplectic manifold with a Hamiltonian action of a torus *T* and a compatible anti-symplectic involution τ , similar to Chapter 4, we have an induced action of $G = T \approx \mathbb{Z}/2$ and $M^G =$ $(M^{\tau})^T = M^{\tau} \cap M^T$.

Now we are interested in relating the *T*-equivariant cohomology of *M* with the T_2 -equivariant cohomology of *M*^τ . First, it can be shown that a symplectic manifold *M* with an action of a torus *T* is equivariantly formal if and only if the *T*-action is Hamiltonian (see Corollary [2.7](#page-4-0) below); therefore, combining Theorems [1.1,](#page-0-0) [1.2](#page-1-0) and [1.2.1](#page-1-1) we can state the following theorem.

Theorem 1.4. *Let M be a symplectic manifold with an action of a torus T and a compatible involution* τ*. If M* is T-equivariantly formal over \R , then the real locus M^τ is T_2 -equivariantly formal over \mathbb{F}_2 .

If *M* is a complex projective space, we have that *M* satisfies Theorem [1.4](#page-1-2) and also *b*(*M*) and *b*(*M*^τ) have the same Betti sum; this implies that *M* is also τ -equivariantly formal. However, the next example exhibits a symplectic manifold M where Theorem [1.4](#page-1-2) applies, but M is not τ -equivariantly formal.

Example 1.5. Consider the symplectic manifold (S^2, ω) where $\omega \in H^2(S^2)$ is a generator. Let $T = S^1$ act on S^2 as the projection along the z-axis set $(M, \omega) = (S^2 \times S^2 \cdot n^* \omega) - n^* \omega)$ where $n : M \to S^2$ is the projec on S^2 as the rotation along the *z*-axis, set $(M, \gamma) = (S^2 \times S^2, p_1^* \omega - p_2^* \omega)$ where $p_i : M \to S^2$ is the projection
onto the *i*-th factor. Let $\tau : M \to M$ be the involution given by $\tau(x, y) = (y, x)$ then τ is an antionto the *i*-th factor. Let $τ : M → M$ be the involution given by $τ(x, y) = (y, x)$, then $τ$ is an anti-symplectic involution; and consider the action of *T* on *M* given by $g \cdot (x, y) = (g \cdot x, g^{-1} \cdot y)$, the action is compatible with the involution and therefore, from Theorems 1.1 and 1.2 $H^*(M: \mathbb{R})$ is free over $H^*(RT: \mathbb{R})$ and $H^*($ the involution and therefore, from Theorems [1.1](#page-0-0) and [1.2,](#page-1-0) $H^*_T(M; \mathbb{R})$ is free over $H^*(BT; \mathbb{R})$ and $H^*_{T_2}(Y; \mathbb{F}_2)$ is free over $H^*(BT_2; \mathbb{F}_2)$ where $Y = M^{\tau} \cong S^2$ and T_2 is the 2-torus in *T*. This also follows from the Betti sum criteria; namely, M^T consist of 4-points, and thus $b(M) = b(M^T) = 4$. Also, Y^{T_2} consists of two points and thus $b(Y) = b(Y^T2) = 2$; however, $b(Y) < b(M)$ and thus the equivariant cohomology $H^*_{\mathbb{Z}/2}(M; \mathbb{F}_2)$ is not free
over $H^*(B\mathbb{Z}/2; \mathbb{F}_2)$ where the action of $\mathbb{Z}/2$ on M is the one given by the involution τ over $H^*(B\mathbb{Z}/2;\mathbb{F}_2)$ where the action of $\mathbb{Z}/2$ on *M* is the one given by the involution τ .

On the other hand, we immediately have a condition for *^M* being τ-equivariantly formal.

Proposition 1.6. *Let M be a symplectic manifold with a Hamiltonian action of a torus T and a antisymplectic involution* ^τ*. Then M is* ^τ*-equivariantly formal over* ^F² *if and only if b*(*M*) ⁼ *^b*(*M^H*) *where H is the* 2-*subtorus in* $G = T \times \mathbb{Z}/2$ *. The latter acts on M via the induced action of* T *and* τ *.*

By Proposition [1.6,](#page-1-3) it is enough to assume that *X* is *T*-equivariantly formal for X^{τ} to be T_2 -equivariantly formal in the symplectic setting. Now in the most general possible case, we have the following question.

Question 1.7. *Let X be a T-space together with a compatible involution* τ *. Assume that b(X)* < ∞ *and* $H_T^*(X; \mathbb{F}_2)$ *is a free H*[∗](*BT*; \mathbb{F}_2)*-module. Is* $H_{T_2}^*(X^{\tau}; \mathbb{F}_2)$ *a free H[∗](BT*₂; \mathbb{F}_2)*- module where the action of the* 2-torus $T_2 \subseteq T$ on X^{τ} is the one induced by the action of T on X?

Without extra assumptions on the space, a negative answer can be given as we will describe in the next proposition.

Proposition 1.8. *There exists a manifold X with an action of* $T = S¹$ *and a compatible involution* τ *such* that X is *T*-equivariantly formal with *respect to the induced* that X is T-equivariantly formal and the real locus X^τ is not equivariantly formal with respect to the induced *action of the 2-torus subgroup* $T_2 \subseteq T$.

Proof. let $X = \{(u, z) \in \mathbb{C} \times \mathbb{R} : |u|^2 + |z|^2 = 1\} = S^2$, let $T = S^1$ act on X by $g \cdot (u, z) = (gu, z)$; more precisely, by scalar multiplication in the first factor. Let τ be the involution $\tau(u, z) = (\bar{u}, -z)$ which is c by scalar multiplication in the first factor. Let τ be the involution $\tau(u, z) = (\bar{u}, -z)$ which is compatible with the torus action. Notice that $X^T = \{(0, 1), (0, -1)\} \cong S^0$ and $X^T = \{(-1, 0), (1, 0)\} \cong S^0$. Therefore, the action
of T_2 on X^T is the multiplication by $+1$ and thus it is a free T_2 -space, this implies that its T_2 of T_2 on X^{τ} is the multiplication by ± 1 and thus it is a free T_2 -space, this implies that its T_2 -equivariant cohomology is not free over $H^*(BT_2)$. On the other hand, $H^*_T(X)$ is a free $H^*(BT)$ -module since *X* and X^T have the same Betti sum. \square

One of the main issues of this example is that $X^G = \emptyset$, even assuming $X^G \neq \emptyset$ a counterexample of question [1.7](#page-2-0) can be found and its construction is motivated by [\[Su, 1964,](#page-7-7) Sec. 5]. First we recall the following well known construction of topological spaces.

Definition 1.9. Let $f : X \to Y$ be a *G*-map between *G*-spaces *X* and *Y*. The mapping cylinder is defined as the *G*-space $M_f = (X \times [0, 1]) \sqcup Y / ∼$ where $(x, 1) ∼ f(x)$, with the action given by $g \cdot (x, t) = (gx, t)$ for $(x, t) \in X \times [0, 1]$ and the regular action on *Y*; notice that it is well defined at the points of the form $(x, 1)$ since *f* is a *G*-map.

The space M_f is G-homotopic to Y, and therefore $H^*(M_f) \cong H^*(Y)$. Also, the fixed point subspace $(M_f)^G \cong H^*(Y)$ M_f ^{*G*} where f^G : $X^G \to Y^G$. Now let $g: X \to Z$ be a *G*-map and M_g the respective mapping cylinder, then the space $M_{f,g} = M_f \cup_{X \times \{0\}} M_g$ has cohomology groups fitting in the long exact sequence

$$
0 \to H^0(M_{f,g}) \to H^0(Y) \oplus H^0(Z) \to H^0(X) \to H^1(M_{f,g}) \to \cdots
$$

following from the Mayer-Vietoris long exact sequence. Moreover, $M_{f,g}$ becomes a *G*-space and $(M_{f,g})^G \cong M$ M_{f^G, g^G} . In particular, we have

Proposition 1.10. *Let* m, n, r *be different integers,* $h : S^m \to S^n$ *a map between spheres and consider* $f = h \times id \cdot S^m \times S^r \to S^n \times S^n$ and $g: S^m \times S^r \to S^m$ the projection Then $H^*(M_S)$ is free over $\mathbb{Z}/2$ where $f = h \times id$: $S^m \times S^r \to S^n \times S^r$ and g : $S^m \times S^r \to S^m$ the projection. Then $H^*(M_{f,g})$ is free over $\mathbb{Z}/2$ where g conv of $\mathbb{Z}/2$ happens in degree 0, n m + r + 1, n + r and it is zero otherwise. In particular $h(M$ *a copy of* $\mathbb{Z}/2$ *happens in degree* 0, *n*, *m* + *r* + 1, *n* + *r and it is zero otherwise. In particular, b*($M_{f,g}$) = 4.

Example 1.11. Let $X = S^3 \subseteq \mathbb{C}^2$, $Y = S^5 \subseteq \mathbb{C}^3$ and $Z = S^9 \subseteq \mathbb{C}^4$. Let $T = S^1$ act on *X* and *Y* by scalar multiplication on the first component , respectively, and let *T* act on *Z* by scalar multiplication on the first and second component and trivially otherwise. Then $X^T = S^1$, $Y^T = S^3$ and $Z^T = S^5$. Let τ act on *X* and *Y* as the complex conjugation on the first component respectively, and on *Z* as the complex conjugation on t as the complex conjugation on the first component respectively, and on *Z* as the complex conjugation on the first and second component and multiplication by -1 on the other components. Then $X^{\tau} = S^2$, $Y^{\tau} = S^4$ and $Z^{\tau} = S^{\tau}$. Note that the induced action of $T_2 \subseteq T$ is free on Z^{τ} .

Let $f: X \times Z \to Y \times Z$ be the map $i \times id$ where *i* is the inclusion $i(u, z) = (u, z, 0)$, and $g: X \times Z \to X$ the projection. Consider the *T*-space $M = M_{f,g}$ and the induced action of τ on *M* becomes a compatible involution. Then $b(M) = b(M^T) = b(M^T) = 4$ from Proposition [1.10,](#page-2-1) but $b(M^G) = b((M^T)^{T_2}) = 2$.

Example 1.12. Let $X = S^3$, $Y = S^2$ and $h: X \to Y$ be the Hopf map. This map can be explicitly presented as $h(u, z) = (2u\overline{z}, |u|^2 - |z|^2)$ where S^3 is seen as the unit sphere in \mathbb{C}^2 and S^2 as the unit sphere in $\mathbb{C} \times \mathbb{R}$.
Let $T = S^1$ act on S^3 and S^2 as the complex multiplication in the first component Let $T = S^1$ act on S^3 and S^2 as the complex multiplication in the first component respectively, and τ be the involution on S^3 and S^2 given by the complex conjugation in the first component respectively. The the involution on *S*³ and *S*² given by the complex conjugation in the first component respectively. Then τ is
compatible with the torus action and $X^T \approx S^1 \times T^T \approx S^2 \times T^T \approx S^0$ and $Y^T \approx S^1$. Now let $Z = S^5$ be compatible with the torus action and $X^T \cong S^1$, $X^T \cong S^2$, $Y^T \cong S^0$ and $Y^T \cong S^1$. Now let $Z = S^5$ be the unit sphere in \mathbb{C}^3 , let *T* act on *Z* by multiplication in the first component and τ be the involution on *Z* given by the complex conjugation in the first component and multiplication by -1 in the second and thir the complex conjugation in the first component, and multiplication by −1 in the second and third component; then $Z^T \cong S^3$ and $Z^T \cong S^0$, notice that the action of the 2-torus $T_2 \subseteq T$ on Z^T is free.

Let $M = M_{f,g}$ be the construction of Proposition [1.10](#page-2-1), then $b(M) = b(M^T) = b(M^T) = 4$ and thus *M* is *T* conjugative formal proposition $b((MT)^T) = 2 \le b(M^T)$ *T*-equivariantly formal; nevertheless, M^{τ} is not T_2 -equivariantly formal since $b((M^{\tau})^{T_2}) = 2 < b(M^{\tau})$.

These examples provide a negative solution for Question [1.7](#page-2-0) with non-empty common fixed points of both *T* and τ . Summarizing we get.

Proposition 1.13. *There is a topological space M with an action of a torus T and a compatible involution* τ *such that* $M^G \neq \emptyset$ *, M is T-equivariantly formal and* $\mathbb{Z}/2$ *-equivariantly formal, but the real locus* M^{τ} *is not*
T-equivariantly formal with respect to the induced action of the 2-torus $T_2 \subseteq T$ on M^{τ} *T*₂*-equivariantly formal with respect to the induced action of the* 2*-torus* $T_2 \subseteq T$ *on* M^{τ} . *.*

2 Cohomologically symplectic spaces

Definition 2.1. Let *M* be a k-Poincare duality space with formal dimension 2*n*. We say that *M* is a csymplectic space (cohomologically symplectic), if there is a class $\omega \in H^2(M; \mathbb{k})$ such that $\omega^n \neq 0$.

Notice that any compact symplectic manifold is a c-symplectic space; however, there exists c-symplectic spaces which do not admit a symplectic structure. For instance, the connected sum $\mathbb{C}P^2$ # $\mathbb{C}P^2$ is c-symplectic but it does not admit a symplectic form [\[Audin, 1991,](#page-7-8) Prop 1.3.1].

Definition 2.2. A *c*-symplectic space *M* satisfies the weak Lefschetz condition if the multiplication by ω^{n-1}
induces an isomorphism $H^1(M^+\triangleright) \cong H^{2n-1}(M^+\triangleright)$ Moreover, if the multiplication by ω^r induces induces an isomorphism $H^1(M; \mathbb{k}) \cong H^{2n-1}(M; \mathbb{k})$. Moreover, if the multiplication by ω^r induces an isomor-
phism $H^{n-r}(M; \mathbb{k}) \cong H^{n+r}(M; \mathbb{k})$ for $r-1$, $n-1$, we say that M satisfies the strong I efschetz condit phism $H^{n-r}(M; \mathbb{k}) \cong H^{n+r}(M; \mathbb{k})$ for $r = 1, \ldots, n-1$. we say that *M* satisfies the strong Lefschetz condition. Since any Kähler manifold satisfies the strong Lefschetz condition, we define analogously the cohomological version. More precisely, a c-symplectic space satisfying the strong Lefschetz condition is called a c-Kähler (cohomologically-Kähler) space.

An important property of the c-Kähler spaces is a condition over its Betti numbers, as we remark in the following result.

Proposition 2.3. *Let M be a c-Kähler space, then the odd Betti numbers* $b_{2k+1}(M)$ *are even.*

Proof. Let $s = 2k + 1$. From a standard result in symplectic linear algebra, it is enough to show that $H^s(M)$ admits a non-degenerate skew-symmetric bilinear form. Let $1 \le r \le n - 1$ be such that $s = n + r$ or $s = n - r$, assume without loss of generality the latter. Consider the isomorphism $\phi : H^s(M) \to H^{2n-s}(M)$ given
by multiplication by ω^r from the strong Lefschetz condition. Consider the non-degenerate pairing given by by multiplication by ω^r from the strong Lefschetz condition. Consider the non degenerate pairing given by
Poincaré duality $\mu : H^s(M) \times H^{2n-s}(M) \to \mathbb{k}$. Then the bilinear form on $H^s(M)$ given by $O(a, b) = \mu(a, \phi^{-1}(b))$. Poincaré duality $\mu : H^s(M) \times H^{2n-s}(M) \to \mathbb{k}$. Then the bilinear form on $H^s(M)$ given by $\Omega(a, b) = \mu(a, \phi^{-1}(b))$
is a non-degenerate skew-symmetric form and thus $H^s(M)$ is an even-dimensional vector space. is a non-degenerate skew-symmetric form and thus $H^s(M)$ is an even-dimensional vector space.

Definition 2.4. Let *G* be a torus if $k = \mathbb{Q}$ or a *p*-torus if $k = \mathbb{F}_p$. An action of *G* on *M* is said to be c-Hamiltonian (cohomologically Hamiltonian) if $\omega \in \text{Im}(i^* : H^*_G(M; \Bbbk) \to H^*(M; \Bbbk))$.

Proposition 2.5. *Let M be a c-symplectic space with an action of a torus T. Assume that M satisfies the weak Lefschetz condition and that* $M^T \neq \emptyset$, then the action is c-Hamiltonian.

Proof. We can assume that *T* is a circle. Consider the spectral sequence associated to the fibration $M \rightarrow$ *M*_{*T*} → *BT*, write $d_2(\omega) = x \cdot c \in H^1(M) \otimes H^2(BT)$ where $c \in H^2(BT)$ is a generator. Since *M* is a Poincare duality space and $M^T + \emptyset$, $\omega^n \in \text{Im}(H^*(M) \rightarrow H^*(M))$ and thus $0 = d_2(\omega^n) = n\omega^{n-1}x \cdot c$. From the weak duality space and $M^T \neq \emptyset$, $\omega^n \in \text{Im}(H^*_T(M) \to H^*(M))$ and thus $0 = d_2(\omega^n) = n\omega^{n-1}x \cdot c$. From the weak Lefschetz condition we get that $x = 0$ and so $d_2(\omega) = 0$. Since this is the only possible non-zero differential on ω , we get $\omega \in \text{Im}(H_T^*(M) \to H^*$ (*M*)).

In the case of symplectic manifolds, the Hamiltonian torus action and c-Hamiltonian torus action are the same. This can be shown using the Cartan model for equivariant cohomology. [\[Mukherjee, 2005,](#page-7-9) Prop. 1.5.6]

Theorem 2.6. *Let M be a symplectic manifold with an action of a torus T. The action is Hamiltonian if and only if it is c-Hamiltonian.*

From Theorem [1.1](#page-0-0) we get that a Hamiltonian torus action is equivariantly formal. On the other hand, if *M* is *T*-equivariantly formal, the map $H^*_T(M) \to H^*(M)$ is surjective and thus the action is c-Hamiltonian. Therefore, from [2.6](#page-4-1) we obtain the following result.

Corollary 2.7. *Let M be a symplectic manifold with an action of a torus T. The action is Hamiltonian if and only if M is T -equivariantly formal.*

The following lemma, whose proof requires standard results in algebraic top logy, will allow us to construct further examples.

Lemma 2.8.

- *(a)* Let M and N be connected k-orientable manifolds of the same dimension n. Then $b_i(M\#N) \cong b_i(M) + b_i(M)$ $b_i(N)$ *for* $i \neq 0$ *, n and* $b_0(M) = b_n(M) = 1$ *.*
- *(b)* Let M be a connected manifold of dimension $n \geq 2$. Denote by \overline{M} the manifold obtained by "attaching a *handle"* on *M;* more precisely, remove two open sets $U, V \cong D^n$ of *M* and then glue a cylinder $S^{n-1} \times I$
along the common boundary $S^{n-1} \cup S^{n-1}$. Then $h(\widetilde{M}) = h(\widetilde{M})$ for $i \neq n-1, 1$; moreover when $n > 2$ *along the common boundary* $S^{n-1} \sqcup S^{n-1}$. Then , $b_i(\widetilde{M}) = b_i(\widetilde{M})$ for $i \neq n-1, 1$; moreover, when $n > 2$
we have that $b_i(\widetilde{M}) = b_i(M) + 1$ for $i = 1, n-1$ and if $n-2$ we have $b_i(\widetilde{M}) = b_i(M) + 2$ *we have that b*_{*j*}(\widetilde{M}) = *b*_{*j*}(M) + 1 *for j* = 1, *n* − 1 *and if n* = 2 *we have b*₁(\widetilde{M}) = *b*₁(M) + 2*.*

Proof. Let *C* denote the gluing cylinder in both cases. To prove (a), observe that collapsing *C* into a point we get an isomorphism $H^*(M \# N, C) \cong H^*((M \# N)/C, C) \cong \widetilde{H}^*(M \vee N)$. Using the cohomology long exact sequence for the pair $(M \# N, C)$ and that $H^*(C) = H^*(S^{n-1})$ we have immediately that $\widetilde{H}^i(M \# N) \cong \widetilde{H}^i(M \vee N)$ sequence for the pair $(M\#N, C)$ and that $H^*(C) = H^*(S^{n-1})$ we have immediately that $\widetilde{H}^i(M\#N) \cong \widetilde{H}^i(M \vee N)$
for $i \neq n, n-1$. To compute the remaining degrees, we look at the short exact sequence for $i \neq n, n - 1$. To compute the remaining degrees, we look at the short exact sequence

$$
0 \to H^{n-1}(M \vee N) \to H^{n-1}(M \# N) \to H^{n-1}(S^{n-1}) \to H^n(M \vee N) \to H^n(M \# N) \to 0
$$

where the map $H^n(M \vee N) \to H^n(M \# N)$ coincides with the surjective map $\Bbbk \otimes \Bbbk \to \Bbbk$ as *M*, *N* and *M*#*N* are k-orientable and thus $H^{n-1}(M \vee N) \cong H^{n-1}(M \# N)$. To prove (b) we use the Mayer-Vietoris long exact sequence. We write $\widetilde{M} = N \cup S$ where *N* is homeomorphic to *M* with two discs removed *U* and *V*, and $S \cong S^{n-1}$; also we have that the intersection $N \cap S \cong S^{n-1} \sqcup S^{n-1}$. Therefore, the Mayer-Vietoris long exact sequence yields

$$
0 \to \mathbb{k} \to H^1(\widetilde{M}) \to H^1(N) \oplus H^1(S^{n-1}) \to H^1(S^{n-1}) \oplus H^1(S^{n-1}) \to \cdots
$$

$$
\cdots \to H^{n-1}(\widetilde{M}) \to H^{n-1}(N) \oplus H^{n-1}(S^{n-1}) \to H^{n-1}(S^{n-1}) \oplus H^{n-1}(S^{n-1})
$$

$$
\to H^n(\widetilde{M}) \to H^n(N) \to 0
$$

Therefore, $b_i(\widetilde{M}) = b_i(N)$ for $i \neq 1$, $b_1(\widetilde{M}) = b_1(N) + 1$ and $b_n(\widetilde{M}) = 1$. It only remains to compute the Betti numbers of *N*. To do so, we use again the Mayer-Vietoris sequence for the decomposition $M = N \cup W$ where $W = U \cup V \cong D^n \sqcup D^n$. In this case, the sequence give us $b_i(N) = b_i(M)$ for $i \neq n-1, n, b_{n-1}(N) = b_{n-1}(M) + 1$
and $b(N) = 0$. The statement of the lemma follows by combining the results from the two sequences and $b_n(N) = 0$. The statement of the lemma follows by combining the results from the two sequences discussed above.

If *M* is a c-symplectic space which is *T*-equivariantly formal, then the action is automatically c-Hamiltonian. However, if *M* admits a c-Hamiltonian action of a torus *T*, it is not necessarily *T*-equivariantly formal; as we state in the following proposition.

Proposition 2.9 (C. Allday [\[Allday, 1998\]](#page-7-10)). *There exist a c-symplectic space M satisfying the weak Lefschetz condition together with a c-Hamiltonian action of a circle T and* $b(M^T) < b(M)$ *. Thus M is not*
T-equivariantly formal *T -equivariantly formal.*

Proof. Let $T = S^1$ act freely on $X = S^3 \times S^3$. By the equivariant tubular neighborhood consider a tube $U = S^1 \times D^5$ around an orbit where *T* acts by multiplication on the first factor. Remove the interior of the tube and glue $D^2 \times S^4$, where *T* acts by rotations on the first factor. Call the resulting manifold *N*, then *N* is a *T*-space where $N^T = S^4$. Using the Mayer-Vietoris long exact sequence, we obtain that the Betti numbers of $H^*(N; \mathbb{Q})$ are 1, 0, 1, 2, 1, 0, 1 in degree 0, 1, ..., 6 respectively; in fact, let $N_0 = X \setminus U$ which is homeomorphic to $S^3 \times S^3$ with an orbit removed around a chosen point. Let $V \cong S^1 \times D^5$ be such that $X = N_0 \cup V$ and $N_0 \cap V \cong S^1 \times (D^5 \setminus \{0\})$ which has the homotopy type of $S^1 \times S^4$. Applying the Mayer-Vietoris long exact sequence for such decomposition we get that $H^*(N_0)$ has dimension 1, 0, 0, 2, 1, 0, 0 in degree 0.1 for expectively Now N is constructed by gluing N_0 and $D^2 \times S^4$ along the common boundary degree 0, 1, ..., 6 respectively. Now, *N* is constructed by gluing N_0 and $D^2 \times S^4$ along the common boundary $S^1 \times S^4$ this provides a decomposition of *N* into open sets $U \subset V$ such that $U \cong N_0$, $V \cong S^4$ $U \cup V$ $S^1 \times S^4$, this provides a decomposition of *N* into open sets $U \subseteq V$ such that $U \cong N_0$, $V \cong S^4$, $U \cup V = N$ and $U \cap V \cong S^1 \times S^4$. From the Mayer-Vietoris long exact sequence the Betti numbers of $H^*(N; \mathbb{Q})$ are the ones stated above.

Now let *T* act on $\mathbb{C}P^3$ by $g \cdot [z_0 : z_1 : z_2 : z_3] = [gz_0 : z_1 : z_2 : z_3]$, so the fixed point subspace is homeomorphic to $p \sqcup \mathbb{C}P^2$ where $p = [1 : 0 : 0 : 0]$. Let $M = N \# \mathbb{C}P^3$ be the equivariant connected sum formed by removing *T*-invariant discs around fixed points of $p \in N^T = S^4 \subseteq N$ and $y \in (\mathbb{C}P^3)^T = \mathbb{C}P^2 \subseteq \mathbb{C}P^3$; the existence of the *T*-invariant discs follows from the Equivariant tubular neighborhood theorem (Theorem ??). This implies then that $b(M) = 8$. Notice that $M^G \cong p \cup (S^4 \# \mathbb{C} P^2) \cong p \cup \mathbb{C} P^2$; moreover, the non-trivial form $\omega \in H^2(\mathbb{C}P^3; \mathbb{Q})$ induces a non trivial form $\tilde{\omega} \in H^2(M; \mathbb{Q})$ such that $\tilde{\omega}^3 \neq 0$, so *M* is a *c*-symplectic space.
Moreover since $\mathbb{C}P^3$ is *T*-equivariantly formal, the lifting of the class ω Moreover, since $\mathbb{C}P^3$ is *T*-equivariantly formal, the lifting of the class ω to $H^*_T(\mathbb{C}P^3; \mathbb{Q})$ induces a lifting of $\tilde{\omega}$ to $H^*(M; \mathbb{Q})$ and thus the action of *T* on *M* is c-Hamiltonian. However, to $H^*_T(M; \mathbb{Q})$ and thus the action of *T* on *M* is c-Hamiltonian. However, since $b(M^T) = 4 < b(M) = 8$, *M* is not *T*-equivariantly formal and therefore Theorem 1.1 does not hold in the case of c-symplectic spaces. not \overline{T} -equivariantly formal and therefore Theorem [1.1](#page-0-0) does not hold in the case of c-symplectic spaces. \Box

Even though we may consider formal Hamiltonian torus action on c-symplectic spaces, Question [1.7](#page-2-0) in the setting of c-symplectic spaces does not have a positive solution. The example will be constructed in a similar fashion as in Proposition [2.9.](#page-5-0)

Proposition 2.10. *There exists a c-symplectic space M with a torus action of T and a compatible c-antisymplectic involution* τ *such that* M *is* T -equivariantly formal over $\mathbb Q$ and the real locus M^{τ} is not equivariantly formal over $\mathbb R_2$ with respect to the induced action of the 2-torus subgroup $T_2 \subseteq T$ *over* \mathbb{F}_2 *with respect to the induced action of the 2-torus subgroup* $T_2 \subseteq T$.

Proof. Let $T = S^1$, consider the *T*-action on $S^3 \subseteq \mathbb{C} \times \mathbb{C}$ given by $g \cdot (u, z) = (gu, z)$ and the involution τ defined as $\tau(u, z) = (\bar{u}, -z)$ then τ is compatible with the *T*-action and we have an induced acti as $\tau(u, z) = (\bar{u}, -z)$, then τ is compatible with the *T*-action and we have an induced action of $G = T \rtimes \mathbb{Z}/2$; moreover, $(S^3)^T \cong S^1 \subseteq \{0\} \times \mathbb{C}$ and $(S^3)^T \cong S^0 \subseteq \mathbb{C} \times \{0\}$. Let $X = S^3 \times S^3$ be the *G*-space with the induced diagonal action, let $Y = \mathbb{C}P^3$ be the *G*-space with the action given by $g \cdot [z_0 : z_1 : z_2 : z_3] = [gz_0 : gz_1 : z_2 : z_3]$ for $g \in T$ and the involution τ defined as the complex conjugation, then $X^T \cong S^1 \times S^1$, $X^T \cong S^0 \times S^0$, $Y^T \cong \mathbb{C}P^1 \cup \mathbb{C}P^1$ $Y^T \cong \mathbb{R}P^3$. Notice that the induced $T_2 \cong \mathbb{Z}/2$ -action on X^T is fr $Y^T \cong \mathbb{C}P^1 \sqcup \mathbb{C}P^1$, $Y^T \cong \mathbb{R}P^3$. Notice that the induced $T_2 \cong \mathbb{Z}/2$ -action on X^T is free while $(Y^T)^{T_2} \cong \mathbb{R}P^1 \sqcup \mathbb{R}P^1$.

Choose points $x \in X^T \setminus X^T$ and $y \in Y^T \setminus Y^T$, then the orbit spaces $G \cdot x \cong G \cdot y$ consist of two points and the stabilizers $G_x \cong G_y \cong T$. By the equivariant tubular neighborhood theorem (Theorem ??), there exist $U \subseteq X$, $V \subseteq Y$ *G*-invariant neighborhoods of *x* and *y* respectively such that $U \cong V \cong D^6 \times \mathbb{Z}/2$, *T* acts by scalar multiplication on the complex components of $D^6 \subset (\mathbb{C} \times \mathbb{R})^2$ and *x* is the complex conjug scalar multiplication on the complex components of $D^6 \subseteq (\mathbb{C} \times \mathbb{R})^2$ and τ is the complex conjugation on D^6
on the complex components, and multiplication by -1 on the real components and the $\mathbb{Z}/2$ factor on the complex components, and multiplication by [−]1 on the real components and the ^Z/2 factor. Let *^M* be the space obtained as "a double connected sum" by removing *U* and *V* from *X* and *Y* respectively and gluing the spaces $X \setminus U$ and $Y \setminus V$ along a double cylinder $I \times S^5 \times \mathbb{Z}/2$ where *G* acts trivially on the unit interval *I* and on $S^5 \times \mathbb{Z}/2$ as the restriction of the action on the boundary of $D^6 \times \mathbb{Z}/2$ described *I* and on $S^5 \times \mathbb{Z}/2$ as the restriction of the action on the boundary of $D^6 \times \mathbb{Z}/2$ described above. Note that *M* can be obtained by attaching a handle to the connected sum $X \# Y$. Therefore, from *Lemma* 2.8, t *M* can be obtained by attaching a handle to the connected sum *X*#*Y*. Therefore, from Lemma [2.8,](#page-4-2) the Betti numbers of *M* are 1, 1, 1, 2, 1, 1, 1 in degree 0, 1, ..., 6 respectively and thus $b(M) = 8$. We have also that $M^T \cong M_0 \sqcup \mathbb{C}P^1$ where M_0 is homeomorphic to a "double connected sum" between $S^1 \times S^1$ and $\mathbb{C}P^1$, which is indeed homeomorphic to a genus 2 surface. Therefore, $b(M^T) = b(M_0) + b(\mathbb{C}P^1) = 6 + 2 = 8$ so *M* is a *T* equivariantly formal space. Moreover, the symplectic form $\Omega \in H^2(\mathbb{C}P^3)$ induces a c-symplectic form $\omega \in H^2(M)$ which admits an equivariant lifting $\tilde{\omega} \in H^2_T(M)$ and thus the action of *T* on *M* is c-Hamiltonian.
On the other hand $M^T \approx (S^0 \times S^0) + \mathbb{R}P^3$ and thus $h(M^T) = 4 + 4 = 8$; however $(M^T)^T_2 \approx \mathbb{R}P^1 + \math$ On the other hand, $M^{\tau} \cong (S^0 \times S^0) \sqcup \mathbb{R}P^3$ and thus $b(M^{\tau}) = 4 + 4 = 8$; however, $(M^{\tau})^{T_2} \cong \mathbb{R}P^1 \sqcup \mathbb{R}P^1$ and $b((M^{\tau})^{T_2}) = 4$, that is, M^{τ} is not equivariantly formal with respect to the *T*₂-action.

This example is a c-symplectic space which does not satisfy the weak Lefschetz condition, that is, the multiplication by ω^2 : $H^1(M) \to H^5(M)$ is clearly zero. Indeed, since $H^3(M)$ is generated by the elements $a, b \in H^3(S^3 \times S^3)$ and in the cohomology of the connected sum $H^*(S^3 \times S^3 \# \mathbb{C}P^3)$ we have that $a \omega = b \omega = 0$. $a, b \in H^3(S^3 \times S^3)$ and in the cohomology of the connected sum $H^*(S^3 \times S^3 \# \mathbb{C}P^3)$ we have that $a \cdot \omega = b \cdot \omega = 0$, the same equation holds in the cohomology $H^*(M)$. This implies that for the generator $x \in H^1(M)$ we the same equation holds in the cohomology $H^*(M)$. This implies that for the generator $x \in H^1(M)$ we have $x \cdot \omega = \lambda_1 a + \lambda_2 b$ for some $\lambda_1, \lambda_2 \in \{0, 1\}$ and thus $x \cdot \omega^2 = 0$.

In the case of c-Kähler spaces, any torus action with non empty fixed points is formal and thus *c*-Hamiltonian. This follows from this stronger result due to A. Blanchard [\[Blanchard, 1956,](#page-7-11) Thm. II.1.2].

Theorem 2.11. Let X be c-Kähler space (over a field k) and $X \to E \to B$ be a fiber bundle. Consider *cohomology with coefficients over a field* \mathbb{k} *. Suppose that* $\pi_1(B)$ *acts trivially in the cohomology H[∗](F), then*
the Serre spectral sequence collanses and the Serre spectral sequence collapses and

$$
H^*(E) \cong H^*(B) \otimes H^*(X).
$$

As an immediate result, for any connected group *K* acting on *X*, if the fixed point subspace $X^K \neq \emptyset$, *X* is *K*-equivariantly formal. Now we can prove Duistermaat's theorem in the case of *c*-Kahler spaces. ¨

Proposition 2.12. *Let X be a c-Kähler space (over* $k = F_2$) *with an action of a torus T an a compatible anti-symplectic involution* τ*. Assume that* τ *acts trivially in the cohomology of X. Then X is T -equivariantly formal over* k *and the real locus X*^τ *is T*² *equivariantly formal over* k*.*

Proof. From Blanchard's result, we have that *X* is *T*-equivariantly formal over k. This implies that it is also *^T*2-equivariantly formal by Corollary ?? and so *^T*² acts trivially on the cohomology of *^X*. By assumption, ^τ acts trivially on the cohomology of *X* as well and thus the group $H = T_2 \times \tau$ acts trivially in the cohomology of *X*. Using again Theorem 2.[11](#page-6-0) we obtain that *X* is *H*-equivariantly formal. Finally, the *T*₂-equivariant formality of the real locus X^T follows from Theorem 22. formality of the real locus X^{τ} follows from Theorem ??.

References

- [Allday, 1998] Allday, C. (1998). Examples of circle actions on symplectic spaces. *Banach Center Publications*, 45(1):87–90.
- [Atiyah and Bott, 1984] Atiyah, M. and Bott, R. (1984). The moment map and equivariant cohomology. *Topology*, (23):1–28.
- [Atiyah, 1982] Atiyah, M. F. (1982). Convexity and commuting hamiltonians. *Bulletin of the London Mathematical Society*, 14(1):1–15.
- [Audin, 1991] Audin, M. (1991). Exemples de variétés presque complexes. *l'Enseignement Math.*, 37:175– 190.
- [Biss et al., 2004] Biss, D., Guillemin, V. W., and Holm, T. S. (2004). The mod 2 cohomology of fixed point sets of anti-symplectic involutions. *Advances in Mathematics*, 185(2):370–399.
- [Blanchard, 1956] Blanchard, A. (1956). Sur les variétés analytiques complexes. In *Annales scientifiques de l'École Normale Supérieure*, volume 73, pages 157–202. Elsevier.
- [Borel, 1960] Borel, A. (1960). Seminar on transformation groups, with contributions by g. bredon, ee floyd, d montgomery, r palais. *Annals of Mathematics Studies*, 46.
- [Duistermaat, 1983] Duistermaat, J. (1983). Convexity and tightness for restrictions of hamiltonian functions to fixed point sets of an antisymplectic involution. *Transactions of the American Mathematical Society*, 275(1):417–429.
- [Frankel, 1959] Frankel, T. (1959). Fixed points and torsion on kähler manifolds. Annals of Mathematics, pages 1–8.
- [Kirwan, 1984] Kirwan, F. C. (1984). *Cohomology of quotients in symplectic and algebraic geometry*, volume 31. Princeton University Press.
- [Mukherjee, 2005] Mukherjee, G. (2005). *Transformation groups: symplectic torus actions and toric manifolds*. Springer.
- [Su, 1964] Su, J. (1964). Periodic transformations on the product of two spheres. *Transactions of the American Mathematical Society*, 112(3):369–380.