Equivariant cohomology for c-symplectic spaces

Sergio Chaves

November 6, 2019

Following [Borel, 1960], let *G* be topological group, $EG \rightarrow BG$ a universal principal bundle for *G* and let *X* be a topological space with a continuous action of *G*, or a *G*-space. The equivariant cohomology of *X*, denoted by $H^*_G(X; R)$, is the cohomology of $H^*(X_G; R)$ where $X_G = (X \times EG)/G$ is the Borel construction of *X*. This object inherits a canonical structure as a module over $H^*(BG; R)$. We say that *X* is *G*-equivariantly formal if $H^*_G(X; R)$ is a free module over $H^*(BG; R)$.

1 Equivariant cohomology for the real locus of symplectic manifolds

The *G*-equivariant cohomology of a *G*-space *X* is closely related to the topology of its fixed point set X^G . This situation has appeared in more specific contexts such as the cohomology of compact symplectic manifolds; in fact, following Atiyah [Atiyah, 1982, Thm. 1], and extending Frankel's results in Kähler manifolds [Frankel, 1959, §4]. we cite the following theorem.

Theorem 1.1. Let *M* be a compact symplectic manifold with a Hamiltonian action of a torus *T*. Then there is an additive isomorphism

$$H^*(M;k) \cong \bigoplus_{i=1}^m H^{*-d_i}(F_i;k)$$

where F_i , i = 1, ..., n are the connected components of M^T , d_i is the Bott-Morse index of F_i ; that is, d_i is the number of negative eigenvalues of the Hessian matrix associated to the critical submanifold F_i under the Morse-Bott function $f = ||\mu||^2$. Here μ denotes the moment map associated to the torus action.

This isomorphism is actually extended to the case of T-equivariant cohomology; namely,

$$H_T^*(M;\mathbb{R}) \cong \bigoplus_{i=1}^N H_T^{*-d_i}(F_i;\mathbb{R})$$
(1.1.1)

as shown by Kirwan in [Kirwan, 1984, §5] following Atiyah-Bott [Atiyah and Bott, 1984, Thm. 3.5]. In particular, Theorem 1.1 implies that the Betti sum of M and M^T are the same and it follows that M is T-equivariantly formal over \mathbb{R} .

Motivated by the case where *M* is a complex projective space and the complex conjugation $\tau : M \to M$ is an anti-symplectic involution (i.e. $\tau^* \omega = -\omega$, where ω denotes the symplectic form of *M*) and compatible with the torus action, Duistermaat [Duistermaat, 1983, Thm. 3.1] proved an analogous version of Theorem 1.1 for the fixed point subspace M^{τ} , commonly known as the *Real Locus of M*.

Theorem 1.2. Let (M, ω) be a symplectic manifold with a Hamiltonian action of a torus T and a compatible anti-symplectic involution τ . There is an additive isomorphism

$$H^*(M^{\tau}; \mathbb{F}_2) = \bigoplus_{i=1}^N H^{*-\frac{d_i}{2}}(F_i^{\tau}; \mathbb{F}_2)$$

and $b(M^{\tau}) = b(M^{\tau} \cap M^T)$, where $M^T = \bigcup_{i=1}^m F_i$.

Furthermore, in [Biss et al., 2004, Thm. A], an equivariant version of Theorem 1.2 was proved by Biss-Guillemin-Holm. Explicitly, the action of *T* on *M* induces an action of the subgroup $T_2 = \{g \in T : g^2 = 1\}$ on M^{τ} and the equivariant cohomology satisfies,

$$H_{T_2}^*(M^{\tau}; \mathbb{F}_2) \cong \bigoplus_{i=1}^N H_{T_2}^{*-\frac{d_i}{2}}(F_i^{\tau}; \mathbb{F}_2)$$
(1.2.1)

as $H^*(BT_2; \mathbb{F}_2)$ -modules. They also showed that $b(M^{\tau}) = b(M^{\tau} \cap M^{T_2}) = b((M^{\tau})^{T_2})$. In particular, this implies that M^{τ} is T_2 -equivariantly formal over \mathbb{F}_2 .

Remark 1.3. When *M* is a symplectic manifold with a Hamiltonian action of a torus *T* and a compatible anti-symplectic involution τ , similar to Chapter 4, we have an induced action of $G = T \rtimes \mathbb{Z}/2$ and $M^G = (M^{\tau})^T = M^{\tau} \cap M^T$.

Now we are interested in relating the *T*-equivariant cohomology of *M* with the T_2 -equivariant cohomology of M^{τ} . First, it can be shown that a symplectic manifold *M* with an action of a torus *T* is equivariantly formal if and only if the *T*-action is Hamiltonian (see Corollary 2.7 below); therefore, combining Theorems 1.1, 1.2 and 1.2.1 we can state the following theorem.

Theorem 1.4. Let M be a symplectic manifold with an action of a torus T and a compatible involution τ . If M is T-equivariantly formal over \mathbb{R} , then the real locus M^{τ} is T_2 -equivariantly formal over \mathbb{F}_2 .

If *M* is a complex projective space, we have that *M* satisfies Theorem 1.4 and also b(M) and $b(M^{\tau})$ have the same Betti sum; this implies that *M* is also τ -equivariantly formal. However, the next example exhibits a symplectic manifold *M* where Theorem 1.4 applies, but *M* is not τ -equivariantly formal.

Example 1.5. Consider the symplectic manifold (S^2, ω) where $\omega \in H^2(S^2)$ is a generator. Let $T = S^1$ act on S^2 as the rotation along the *z*-axis, set $(M, \gamma) = (S^2 \times S^2, p_1^* \omega - p_2^* \omega)$ where $p_i \colon M \to S^2$ is the projection onto the *i*-th factor. Let $\tau \colon M \to M$ be the involution given by $\tau(x, y) = (y, x)$, then τ is an anti-symplectic involution; and consider the action of *T* on *M* given by $g \cdot (x, y) = (g \cdot x, g^{-1} \cdot y)$, the action is compatible with the involution and therefore, from Theorems 1.1 and 1.2, $H_T^*(M; \mathbb{R})$ is free over $H^*(BT; \mathbb{R})$ and $H_{T_2}^*(Y; \mathbb{F}_2)$ is free over $H^*(BT_2; \mathbb{F}_2)$ where $Y = M^{\tau} \cong S^2$ and T_2 is the 2-torus in *T*. This also follows from the Betti sum criteria; namely, M^T consist of 4-points, and thus $b(M) = b(M^T) = 4$. Also, Y^{T_2} consists of two points and thus $b(Y) = b(Y^{T_2}) = 2$; however, b(Y) < b(M) and thus the equivariant cohomology $H_{\mathbb{Z}/2}^*(M; \mathbb{F}_2)$ is not free over $H^*(B\mathbb{Z}/2; \mathbb{F}_2)$ where the action of $\mathbb{Z}/2$ on *M* is the one given by the involution τ .

On the other hand, we immediately have a condition for M being τ -equivariantly formal.

Proposition 1.6. Let M be a symplectic manifold with a Hamiltonian action of a torus T and a antisymplectic involution τ . Then M is τ -equivariantly formal over \mathbb{F}_2 if and only if $b(M) = b(M^H)$ where His the 2-subtorus in $G = T \rtimes \mathbb{Z}/2$. The latter acts on M via the induced action of T and τ . By Proposition 1.6, it is enough to assume that X is T-equivariantly formal for X^{τ} to be T_2 -equivariantly formal in the symplectic setting. Now in the most general possible case, we have the following question.

Question 1.7. Let X be a T-space together with a compatible involution τ . Assume that $b(X) < \infty$ and $H^*_T(X; \mathbb{F}_2)$ is a free $H^*(BT; \mathbb{F}_2)$ -module. Is $H^*_{T_2}(X^{\tau}; \mathbb{F}_2)$ a free $H^*(BT_2; \mathbb{F}_2)$ -module where the action of the 2-torus $T_2 \subseteq T$ on X^{τ} is the one induced by the action of T on X?

Without extra assumptions on the space, a negative answer can be given as we will describe in the next proposition.

Proposition 1.8. There exists a manifold X with an action of $T = S^1$ and a compatible involution τ such that X is T-equivariantly formal and the real locus X^{τ} is not equivariantly formal with respect to the induced action of the 2-torus subgroup $T_2 \subseteq T$.

Proof. let $X = \{(u, z) \in \mathbb{C} \times \mathbb{R} : |u|^2 + |z|^2 = 1\} = S^2$, let $T = S^1$ act on X by $g \cdot (u, z) = (gu, z)$; more precisely, by scalar multiplication in the first factor. Let τ be the involution $\tau(u, z) = (\bar{u}, -z)$ which is compatible with the torus action. Notice that $X^T = \{(0, 1), (0, -1)\} \cong S^0$ and $X^\tau = \{(-1, 0), (1, 0)\} \cong S^0$. Therefore, the action of T_2 on X^τ is the multiplication by ± 1 and thus it is a free T_2 -space, this implies that its T_2 -equivariant cohomology is not free over $H^*(BT_2)$. On the other hand, $H^*_T(X)$ is a free $H^*(BT)$ -module since X and X^T have the same Betti sum.

One of the main issues of this example is that $X^G = \emptyset$, even assuming $X^G \neq \emptyset$ a counterexample of question 1.7 can be found and its construction is motivated by [Su, 1964, Sec. 5]. First we recall the following well known construction of topological spaces.

Definition 1.9. Let $f : X \to Y$ be a *G*-map between *G*-spaces *X* and *Y*. The mapping cylinder is defined as the *G*-space $M_f = (X \times [0, 1]) \sqcup Y / \sim$ where $(x, 1) \sim f(x)$, with the action given by $g \cdot (x, t) = (gx, t)$ for $(x, t) \in X \times [0, 1]$ and the regular action on *Y*; notice that it is well defined at the points of the form (x, 1) since *f* is a *G*-map.

The space M_f is *G*-homotopic to *Y*, and therefore $H^*(M_f) \cong H^*(Y)$. Also, the fixed point subspace $(M_f)^G \cong M_{f^G}$ where $f^G \colon X^G \to Y^G$. Now let $g \colon X \to Z$ be a *G*-map and M_g the respective mapping cylinder, then the space $M_{f,g} = M_f \cup_{X \times \{0\}} M_g$ has cohomology groups fitting in the long exact sequence

$$0 \to H^0(M_{f,g}) \to H^0(Y) \oplus H^0(Z) \to H^0(X) \to H^1(M_{f,g}) \to \cdots$$

following from the Mayer-Vietoris long exact sequence. Moreover, $M_{f,g}$ becomes a G-space and $(M_{f,g})^G \cong M_{f^G,g^G}$. In particular, we have

Proposition 1.10. Let m, n, r be different integers, $h : S^m \to S^n$ a map between spheres and consider $f = h \times id: S^m \times S^r \to S^n \times S^r$ and $g: S^m \times S^r \to S^m$ the projection. Then $H^*(M_{f,g})$ is free over $\mathbb{Z}/2$ where a copy of $\mathbb{Z}/2$ happens in degree 0, n, m + r + 1, n + r and it is zero otherwise. In particular, $b(M_{f,g}) = 4$.

Example 1.11. Let $X = S^3 \subseteq \mathbb{C}^2$, $Y = S^5 \subseteq \mathbb{C}^3$ and $Z = S^9 \subseteq \mathbb{C}^4$. Let $T = S^1$ act on X and Y by scalar multiplication on the first component, respectively, and let T act on Z by scalar multiplication on the first and second component and trivially otherwise. Then $X^T = S^1$, $Y^T = S^3$ and $Z^T = S^5$. Let τ act on X and Y as the complex conjugation on the first component respectively, and on Z as the complex conjugation on the first and second component and multiplication by -1 on the other components. Then $X^{\tau} = S^2$, $Y^{\tau} = S^4$ and $Z^{\tau} = S^1$. Note that the induced action of $T_2 \subseteq T$ is free on Z^{τ} .

Let $f : X \times Z \to Y \times Z$ be the map $i \times id$ where *i* is the inclusion i(u, z) = (u, z, 0), and $g : X \times Z \to X$ the projection. Consider the *T*-space $M = M_{f,g}$ and the induced action of τ on *M* becomes a compatible involution. Then $b(M) = b(M^T) = b(M^T) = 4$ from Proposition 1.10, but $b(M^G) = b((M^\tau)^{T_2}) = 2$. **Example 1.12.** Let $X = S^3$, $Y = S^2$ and $h : X \to Y$ be the Hopf map. This map can be explicitly presented as $h(u, z) = (2u\overline{z}, |u|^2 - |z|^2)$ where S^3 is seen as the unit sphere in \mathbb{C}^2 and S^2 as the unit sphere in $\mathbb{C} \times \mathbb{R}$. Let $T = S^1$ act on S^3 and S^2 as the complex multiplication in the first component respectively, and τ be the involution on S^3 and S^2 given by the complex conjugation in the first component respectively. Then τ is compatible with the torus action and $X^T \cong S^1$, $X^{\tau} \cong S^2$, $Y^T \cong S^0$ and $Y^{\tau} \cong S^1$. Now let $Z = S^5$ be the unit sphere in \mathbb{C}^3 , let T act on Z by multiplication in the first component and τ be the involution on Z given by the complex conjugation in the first component, and multiplication by -1 in the second and third component; then $Z^T \cong S^3$ and $Z^{\tau} \cong S^0$, notice that the action of the 2-torus $T_2 \subseteq T$ on Z^{τ} is free.

Let $M = M_{f,g}$ be the construction of Proposition 1.10, then $b(M) = b(M^T) = b(M^\tau) = 4$ and thus M is T-equivariantly formal; nevertheless, M^τ is not T_2 -equivariantly formal since $b((M^\tau)^{T_2}) = 2 < b(M^\tau)$.

These examples provide a negative solution for Question 1.7 with non-empty common fixed points of both T and τ . Summarizing we get.

Proposition 1.13. There is a topological space M with an action of a torus T and a compatible involution τ such that $M^G \neq \emptyset$, M is T-equivariantly formal and $\mathbb{Z}/2$ -equivariantly formal, but the real locus M^{τ} is not T_2 -equivariantly formal with respect to the induced action of the 2-torus $T_2 \subseteq T$ on M^{τ} .

2 Cohomologically symplectic spaces

Definition 2.1. Let *M* be a k-Poincare duality space with formal dimension 2*n*. We say that *M* is a c-symplectic space (cohomologically symplectic), if there is a class $\omega \in H^2(M; \Bbbk)$ such that $\omega^n \neq 0$.

Notice that any compact symplectic manifold is a c-symplectic space; however, there exists c-symplectic spaces which do not admit a symplectic structure. For instance, the connected sum $\mathbb{C}P^2 \# \mathbb{C}P^2$ is c-symplectic but it does not admit a symplectic form [Audin, 1991, Prop 1.3.1].

Definition 2.2. A *c*-symplectic space *M* satisfies the weak Lefschetz condition if the multiplication by ω^{n-1} induces an isomorphism $H^1(M; \Bbbk) \cong H^{2n-1}(M; \Bbbk)$. Moreover, if the multiplication by ω^r induces an isomorphism $H^{n-r}(M; \Bbbk) \cong H^{n+r}(M; \Bbbk)$ for r = 1, ..., n-1. we say that *M* satisfies the strong Lefschetz condition. Since any Kähler manifold satisfies the strong Lefschetz condition, we define analogously the cohomological version. More precisely, a c-symplectic space satisfying the strong Lefschetz condition is called a c-Kähler (cohomologically-Kähler) space.

An important property of the c-Kähler spaces is a condition over its Betti numbers, as we remark in the following result.

Proposition 2.3. Let M be a c-Kähler space, then the odd Betti numbers $b_{2k+1}(M)$ are even.

Proof. Let s = 2k + 1. From a standard result in symplectic linear algebra, it is enough to show that $H^s(M)$ admits a non-degenerate skew-symmetric bilinear form. Let $1 \le r \le n-1$ be such that s = n + r or s = n - r, assume without loss of generality the latter. Consider the isomorphism $\phi : H^s(M) \to H^{2n-s}(M)$ given by multiplication by ω^r from the strong Lefschetz condition. Consider the non degenerate pairing given by Poincaré duality $\mu : H^s(M) \times H^{2n-s}(M) \to \mathbb{k}$. Then the bilinear form on $H^s(M)$ given by $\Omega(a, b) = \mu(a, \phi^{-1}(b))$ is a non-degenerate skew-symmetric form and thus $H^s(M)$ is an even-dimensional vector space.

Definition 2.4. Let G be a torus if $\mathbb{k} = \mathbb{Q}$ or a p-torus if $\mathbb{k} = \mathbb{F}_p$. An action of G on M is said to be c-Hamiltonian (cohomologically Hamiltonian) if $\omega \in \text{Im}(i^* \colon H^*_G(M; \mathbb{k}) \to H^*(M; \mathbb{k}))$.

Proposition 2.5. Let M be a c-symplectic space with an action of a torus T. Assume that M satisfies the weak Lefschetz condition and that $M^T \neq \emptyset$, then the action is c-Hamiltonian.

Proof. We can assume that *T* is a circle. Consider the spectral sequence associated to the fibration $M \to M_T \to BT$, write $d_2(\omega) = x \cdot c \in H^1(M) \otimes H^2(BT)$ where $c \in H^2(BT)$ is a generator. Since *M* is a Poincare duality space and $M^T \neq \emptyset$, $\omega^n \in \text{Im}(H_T^*(M) \to H^*(M))$ and thus $0 = d_2(\omega^n) = n\omega^{n-1}x \cdot c$. From the weak Lefschetz condition we get that x = 0 and so $d_2(\omega) = 0$. Since this is the only possible non-zero differential on ω , we get $\omega \in \text{Im}(H_T^*(M) \to H^*(M))$.

In the case of symplectic manifolds, the Hamiltonian torus action and c-Hamiltonian torus action are the same. This can be shown using the Cartan model for equivariant cohomology. [Mukherjee, 2005, Prop. 1.5.6]

Theorem 2.6. Let *M* be a symplectic manifold with an action of a torus *T*. The action is Hamiltonian if and only if it is *c*-Hamiltonian.

From Theorem 1.1 we get that a Hamiltonian torus action is equivariantly formal. On the other hand, if M is T-equivariantly formal, the map $H_T^*(M) \to H^*(M)$ is surjective and thus the action is c-Hamiltonian. Therefore, from 2.6 we obtain the following result.

Corollary 2.7. *Let M* be a symplectic manifold with an action of a torus *T*. *The action is Hamiltonian if and only if M is T-equivariantly formal.*

The following lemma, whose proof requires standard results in algebraic top logy, will allow us to construct further examples.

Lemma 2.8.

- (a) Let M and N be connected k-orientable manifolds of the same dimension n. Then $b_i(M\#N) \cong b_i(M) + b_i(N)$ for $i \neq 0$, n and $b_0(M) = b_n(M) = 1$.
- (b) Let M be a connected manifold of dimension $n \ge 2$. Denote by \widetilde{M} the manifold obtained by "attaching a handle" on M; more precisely, remove two open sets $U, V \cong D^n$ of M and then glue a cylinder $S^{n-1} \times I$ along the common boundary $S^{n-1} \sqcup S^{n-1}$. Then, $b_i(\widetilde{M}) = b_i(\widetilde{M})$ for $i \ne n-1, 1$; moreover, when n > 2 we have that $b_i(\widetilde{M}) = b_i(M) + 1$ for j = 1, n-1 and if n = 2 we have $b_1(\widetilde{M}) = b_1(M) + 2$.

Proof. Let *C* denote the gluing cylinder in both cases. To prove (a), observe that collapsing *C* into a point we get an isomorphism $H^*(M\#N, C) \cong H^*((M\#N)/C, C) \cong \widetilde{H}^*(M \lor N)$. Using the cohomology long exact sequence for the pair (M#N, C) and that $H^*(C) = H^*(S^{n-1})$ we have immediately that $\widetilde{H}^i(M\#N) \cong \widetilde{H}^i(M \lor N)$ for $i \neq n, n - 1$. To compute the remaining degrees, we look at the short exact sequence

$$0 \to H^{n-1}(M \lor N) \to H^{n-1}(M \# N) \to H^{n-1}(S^{n-1}) \to H^n(M \lor N) \to H^n(M \# N) \to 0$$

where the map $H^n(M \vee N) \to H^n(M\#N)$ coincides with the surjective map $\Bbbk \otimes \Bbbk \to \Bbbk$ as M, N and M#N are \Bbbk -orientable and thus $H^{n-1}(M \vee N) \cong H^{n-1}(M\#N)$. To prove (b) we use the Mayer-Vietoris long exact sequence. We write $\widetilde{M} = N \cup S$ where N is homeomorphic to M with two discs removed U and V, and $S \cong S^{n-1}$; also we have that the intersection $N \cap S \cong S^{n-1} \sqcup S^{n-1}$. Therefore, the Mayer-Vietoris long exact sequence yields

$$0 \to \Bbbk \to H^1(\widetilde{M}) \to H^1(N) \oplus H^1(S^{n-1}) \to H^1(S^{n-1}) \oplus H^1(S^{n-1}) \to \cdots$$
$$\cdots \to H^{n-1}(\widetilde{M}) \to H^{n-1}(N) \oplus H^{n-1}(S^{n-1}) \to H^{n-1}(S^{n-1}) \oplus H^{n-1}(S^{n-1})$$

$$\to H^n(\widetilde{M}) \to H^n(N) \to 0$$

Therefore, $b_i(\widetilde{M}) = b_i(N)$ for $i \neq 1$, $b_1(\widetilde{M}) = b_1(N) + 1$ and $b_n(\widetilde{M}) = 1$. It only remains to compute the Betti numbers of N. To do so, we use again the Mayer-Vietoris sequence for the decomposition $M = N \cup W$ where $W = U \cup V \cong D^n \sqcup D^n$. In this case, the sequence give us $b_i(N) = b_i(M)$ for $i \neq n-1, n, b_{n-1}(N) = b_{n-1}(M) + 1$ and $b_n(N) = 0$. The statement of the lemma follows by combining the results from the two sequences discussed above.

If M is a c-symplectic space which is T-equivariantly formal, then the action is automatically c-Hamiltonian. However, if M admits a c-Hamiltonian action of a torus T, it is not necessarily T-equivariantly formal; as we state in the following proposition.

Proposition 2.9 (C. Allday [Allday, 1998]). There exist a c-symplectic space M satisfying the weak Lefschetz condition together with a c-Hamiltonian action of a circle T and $b(M^T) < b(M)$. Thus M is not T-equivariantly formal.

Proof. Let $T = S^1$ act freely on $X = S^3 \times S^3$. By the equivariant tubular neighborhood consider a tube $U = S^1 \times D^5$ around an orbit where T acts by multiplication on the first factor. Remove the interior of the tube and glue $D^2 \times S^4$, where T acts by rotations on the first factor. Call the resulting manifold N, then N is a T-space where $N^T = S^4$. Using the Mayer-Vietoris long exact sequence, we obtain that the Betti numbers of $H^*(N; \mathbb{Q})$ are 1, 0, 1, 2, 1, 0, 1 in degree 0, 1, ..., 6 respectively; in fact, let $N_0 = X \setminus U$ which is homeomorphic to $S^3 \times S^3$ with an orbit removed around a chosen point. Let $V \cong S^1 \times D^5$ be such that $X = N_0 \cup V$ and $N_0 \cap V \cong S^1 \times (D^5 \setminus \{0\})$ which has the homotopy type of $S^1 \times S^4$. Applying the Mayer-Vietoris long exact sequence for such decomposition we get that $H^*(N_0)$ has dimension 1, 0, 0, 2, 1, 0, 0 in degree 0, 1, ..., 6 respectively. Now, N is constructed by gluing N_0 and $D^2 \times S^4$ along the common boundary $S^1 \times S^4$, this provides a decomposition of N into open sets $U \subseteq V$ such that $U \cong N_0, V \cong S^4, U \cup V = N$ and $U \cap V \cong S^1 \times S^4$. From the Mayer-Vietoris long exact sequence the Betti numbers of $H^*(N; \mathbb{Q})$ are the ones stated above.

Now let *T* act on $\mathbb{C}P^3$ by $g \cdot [z_0 : z_1 : z_2 : z_3] = [gz_0 : z_1 : z_2 : z_3]$, so the fixed point subspace is homeomorphic to $p \sqcup \mathbb{C}P^2$ where p = [1 : 0 : 0 : 0]. Let $M = N \# \mathbb{C}P^3$ be the equivariant connected sum formed by removing *T*-invariant discs around fixed points of $p \in N^T = S^4 \subseteq N$ and $y \in (\mathbb{C}P^3)^T = \mathbb{C}P^2 \subseteq \mathbb{C}P^3$; the existence of the *T*-invariant discs follows from the Equivariant tubular neighborhood theorem (Theorem ??). This implies then that b(M) = 8. Notice that $M^G \cong p \cup (S^4 \# \mathbb{C}P^2) \cong p \cup \mathbb{C}P^2$; moreover, the non-trivial form $\omega \in H^2(\mathbb{C}P^3; \mathbb{Q})$ induces a non trivial form $\tilde{\omega} \in H^2(M; \mathbb{Q})$ such that $\tilde{\omega}^3 \neq 0$, so *M* is a *c*-symplectic space. Moreover, since $\mathbb{C}P^3$ is *T*-equivariantly formal, the lifting of the class ω to $H^*_T(\mathbb{C}P^3; \mathbb{Q})$ induces a lifting of $\tilde{\omega}$ to $H^*_T(M; \mathbb{Q})$ and thus the action of *T* on *M* is c-Hamiltonian. However, since $b(M^T) = 4 < b(M) = 8$, *M* is not *T*-equivariantly formal and therefore Theorem 1.1 does not hold in the case of c-symplectic spaces.

Even though we may consider formal Hamiltonian torus action on c-symplectic spaces, Question 1.7 in the setting of c-symplectic spaces does not have a positive solution. The example will be constructed in a similar fashion as in Proposition 2.9.

Proposition 2.10. There exists a *c*-symplectic space *M* with a torus action of *T* and a compatible *c*-antisymplectic involution τ such that *M* is *T*-equivariantly formal over \mathbb{Q} and the real locus M^{τ} is not equivariantly formal over \mathbb{F}_2 with respect to the induced action of the 2-torus subgroup $T_2 \subseteq T$.

Proof. Let $T = S^1$, consider the *T*-action on $S^3 \subseteq \mathbb{C} \times \mathbb{C}$ given by $g \cdot (u, z) = (gu, z)$ and the involution τ defined as $\tau(u, z) = (\bar{u}, -z)$, then τ is compatible with the *T*-action and we have an induced action of $G = T \rtimes \mathbb{Z}/2$;

moreover, $(S^3)^T \cong S^1 \subseteq \{0\} \times \mathbb{C}$ and $(S^3)^\tau \cong S^0 \subseteq \mathbb{C} \times \{0\}$. Let $X = S^3 \times S^3$ be the *G*-space with the induced diagonal action, let $Y = \mathbb{C}P^3$ be the *G*-space with the action given by $g \cdot [z_0 : z_1 : z_2 : z_3] = [gz_0 : gz_1 : z_2 : z_3]$ for $g \in T$ and the involution τ defined as the complex conjugation, then $X^T \cong S^1 \times S^1$, $X^\tau \cong S^0 \times S^0$, $Y^T \cong \mathbb{C}P^1 \sqcup \mathbb{C}P^1$, $Y^\tau \cong \mathbb{R}P^3$. Notice that the induced $T_2 \cong \mathbb{Z}/2$ -action on X^τ is free while $(Y^\tau)^{T_2} \cong \mathbb{R}P^1 \sqcup \mathbb{R}P^1$.

Choose points $x \in X^T \setminus X^\tau$ and $y \in Y^T \setminus Y^\tau$, then the orbit spaces $G \cdot x \cong G \cdot y$ consist of two points and the stabilizers $G_x \cong G_y \cong T$. By the equivariant tubular neighborhood theorem (Theorem ??), there exist $U \subseteq X, V \subseteq Y$ G-invariant neighborhoods of x and y respectively such that $U \cong V \cong D^6 \times \mathbb{Z}/2$, T acts by scalar multiplication on the complex components of $D^6 \subseteq (\mathbb{C} \times \mathbb{R})^2$ and τ is the complex conjugation on D^6 on the complex components, and multiplication by -1 on the real components and the $\mathbb{Z}/2$ factor. Let M be the space obtained as "a double connected sum" by removing U and V from X and Y respectively and gluing the spaces $X \setminus U$ and $Y \setminus V$ along a double cylinder $I \times S^5 \times \mathbb{Z}/2$ where G acts trivially on the unit interval I and on $S^5 \times \mathbb{Z}/2$ as the restriction of the action on the boundary of $D^6 \times \mathbb{Z}/2$ described above. Note that M can be obtained by attaching a handle to the connected sum X#Y. Therefore, from Lemma 2.8, the Betti numbers of M are 1, 1, 1, 2, 1, 1, 1 in degree $0, 1, \dots, 6$ respectively and thus b(M) = 8. We have also that $M^T \cong M_0 \sqcup \mathbb{C}P^1$ where M_0 is homeomorphic to a "double connected sum" between $S^1 \times S^1$ and $\mathbb{C}P^1$, which is indeed homeomorphic to a genus 2 surface. Therefore, $b(M^T) = b(M_0) + b(\mathbb{C}P^1) = 6 + 2 = 8$ so M is a T equivariantly formal space. Moreover, the symplectic form $\Omega \in H^2(\mathbb{C}P^3)$ induces a c-symplectic form $\omega \in H^2(M)$ which admits an equivariant lifting $\tilde{\omega} \in H^2_T(M)$ and thus the action of T on M is c-Hamiltonian. On the other hand, $M^{\tau} \cong (S^0 \times S^0) \sqcup \mathbb{R}P^3$ and thus $b(M^{\tau}) = 4 + 4 = 8$; however, $(M^{\tau})^{T_2} \cong \mathbb{R}P^1 \sqcup \mathbb{R}P^1$ and $b((M^{\tau})^{T_2}) = 4$, that is, M^{τ} is not equivariantly formal with respect to the T_2 -action. П

This example is a c-symplectic space which does not satisfy the weak Lefschetz condition, that is, the multiplication by ω^2 : $H^1(M) \to H^5(M)$ is clearly zero. Indeed, since $H^3(M)$ is generated by the elements $a, b \in H^3(S^3 \times S^3)$ and in the cohomology of the connected sum $H^*(S^3 \times S^3 \# \mathbb{C}P^3)$ we have that $a \cdot \omega = b \cdot \omega = 0$, the same equation holds in the cohomology $H^*(M)$. This implies that for the generator $x \in H^1(M)$ we have $x \cdot \omega = \lambda_1 a + \lambda_2 b$ for some $\lambda_1, \lambda_2 \in \{0, 1\}$ and thus $x \cdot \omega^2 = 0$.

In the case of c-Kähler spaces, any torus action with non empty fixed points is formal and thus *c*-Hamiltonian. This follows from this stronger result due to A. Blanchard [Blanchard, 1956, Thm. II.1.2].

Theorem 2.11. Let X be c-Kähler space (over a field \Bbbk) and $X \to E \to B$ be a fiber bundle. Consider cohomology with coefficients over a field \Bbbk . Suppose that $\pi_1(B)$ acts trivially in the cohomology $H^*(F)$, then the Serre spectral sequence collapses and

$$H^*(E) \cong H^*(B) \otimes H^*(X).$$

As an immediate result, for any connected group K acting on X, if the fixed point subspace $X^K \neq \emptyset$, X is K-equivariantly formal. Now we can prove Duistermaat's theorem in the case of c-Kähler spaces.

Proposition 2.12. Let X be a c-Kähler space (over $\mathbb{k} = \mathbb{F}_2$) with an action of a torus T an a compatible anti-symplectic involution τ . Assume that τ acts trivially in the cohomology of X. Then X is T-equivariantly formal over \mathbb{k} and the real locus X^{τ} is T_2 equivariantly formal over \mathbb{k} .

Proof. From Blanchard's result, we have that X is T-equivariantly formal over k. This implies that it is also T_2 -equivariantly formal by Corollary ?? and so T_2 acts trivially on the cohomology of X. By assumption, τ acts trivially on the cohomology of X as well and thus the group $H = T_2 \times \tau$ acts trivially in the cohomology of X. Using again Theorem 2.11 we obtain that X is H-equivariantly formal. Finally, the T_2 -equivariant formality of the real locus X^{τ} follows from Theorem ??.

References

- [Allday, 1998] Allday, C. (1998). Examples of circle actions on symplectic spaces. Banach Center Publications, 45(1):87–90.
- [Atiyah and Bott, 1984] Atiyah, M. and Bott, R. (1984). The moment map and equivariant cohomology. *Topology*, (23):1–28.
- [Atiyah, 1982] Atiyah, M. F. (1982). Convexity and commuting hamiltonians. Bulletin of the London Mathematical Society, 14(1):1–15.
- [Audin, 1991] Audin, M. (1991). Exemples de variétés presque complexes. l'Enseignement Math., 37:175– 190.
- [Biss et al., 2004] Biss, D., Guillemin, V. W., and Holm, T. S. (2004). The mod 2 cohomology of fixed point sets of anti-symplectic involutions. *Advances in Mathematics*, 185(2):370–399.
- [Blanchard, 1956] Blanchard, A. (1956). Sur les variétés analytiques complexes. In *Annales scientifiques de l'École Normale Supérieure*, volume 73, pages 157–202. Elsevier.
- [Borel, 1960] Borel, A. (1960). Seminar on transformation groups, with contributions by g. bredon, ee floyd, d montgomery, r palais. *Annals of Mathematics Studies*, 46.
- [Duistermaat, 1983] Duistermaat, J. (1983). Convexity and tightness for restrictions of hamiltonian functions to fixed point sets of an antisymplectic involution. *Transactions of the American Mathematical Society*, 275(1):417–429.
- [Frankel, 1959] Frankel, T. (1959). Fixed points and torsion on kähler manifolds. *Annals of Mathematics*, pages 1–8.
- [Kirwan, 1984] Kirwan, F. C. (1984). *Cohomology of quotients in symplectic and algebraic geometry*, volume 31. Princeton University Press.
- [Mukherjee, 2005] Mukherjee, G. (2005). Transformation groups: symplectic torus actions and toric manifolds. Springer.
- [Su, 1964] Su, J. (1964). Periodic transformations on the product of two spheres. *Transactions of the American Mathematical Society*, 112(3):369–380.