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Following [Borel, 1960], let G be topological group, EG — BG a universal principal bundle for G and let
X be a topological space with a continuous action of G, or a G-space. The equivariant cohomology of X,
denoted by H{,(X; R), is the cohomology of H*(Xg; R) where Xg = (X X EG)/G is the Borel construction of
X. This object inherits a canonical structure as a module over H*(BG; R). We say that X is G-equivariantly
formal if Hf,(X; R) is a free module over H*(BG; R).

1 Equivariant cohomology for the real locus of symplectic manifolds

The G-equivariant cohomology of a G-space X is closely related to the topology of its fixed point set X©. This
situation has appeared in more specific contexts such as the cohomology of compact symplectic manifolds; in
fact, following Atiyah [Atiyah, 1982, Thm. 1], and extending Frankel’s results in Kéhler manifolds [Frankel,
1959, §4]. we cite the following theorem.

Theorem 1.1. Let M be a compact symplectic manifold with a Hamiltonian action of a torus T. Then there
is an additive isomorphism

H (M; k) = @ H*%(F;; k)
i=1

where F;, i = 1,...,n are the connected components of M7, d; is the Bott-Morse index of F;; that is, d; is
the number of negative eigenvalues of the Hessian matrix associated to the critical submanifold F; under the
Morse-Bott function f = ||ul|>. Here u denotes the moment map associated to the torus action.

This isomorphism is actually extended to the case of T-equivariant cohomology; namely,

N
Hy(M;R) = @D H; % (Fis R) (1.1.1)
i=1

as shown by Kirwan in [Kirwan, 1984, §5] following Atiyah-Bott [Atiyah and Bott, 1984, Thm. 3.5]. In
particular, Theorem 1.1 implies that the Betti sum of M and M7 are the same and it follows that M is T-
equivariantly formal over R.

Motivated by the case where M is a complex projective space and the complex conjugation 7 : M — M is an
anti-symplectic involution (i.e. 7w = —w, where w denotes the symplectic form of M) and compatible with
the torus action, Duistermaat [Duistermaat, 1983, Thm. 3.1] proved an analogous version of Theorem 1.1 for
the fixed point subspace M", commonly known as the Real Locus of M.



Theorem 1.2. Let (M, w) be a symplectic manifold with a Hamiltonian action of a torus T and a compatible
anti-symplectic involution 1. There is an additive isomorphism

N
H (M Fo) = (D H 2 (F[: F)
i=1

and b(M7) = b(M™ \ MT), where M” = U F,.

i=1
Furthermore, in [Biss et al., 2004, Thm. A], an equivariant version of Theorem 1.2 was proved by Biss-
Guillemin-Holm. Explicitly, the action of T on M induces an action of the subgroup T, = {g € T : g> = 1}
on M™ and the equivariant cohomology satisfies,

N 0
Hj (M3 Fy) = @HTZ :(FT; Fy) (1.2.1)
i=1

as H*(BT,;F,)-modules. They also showed that b(M7) = b(MTN M) = b((M™)"?). In particular, this implies
that M7 is T»-eqivariantly formal over F,.

Remark 1.3. When M is a symplectic manifold with a Hamiltonian action of a torus 7 and a compatible
anti-symplectic involution 7, similar to Chapter 4, we have an induced action of G = T =< Z/2 and MG =
M =M nMT".

Now we are interested in relating the T-equivariant cohomology of M with the T,-equivariant cohomology
of M". First, it can be shown that a symplectic manifold M with an action of a torus 7 is equivariantly formal
if and only if the T-action is Hamiltonian (see Corollary 2.7 below); therefore, combining Theorems 1.1, 1.2
and 1.2.1 we can state the following theorem.

Theorem 1.4. Let M be a symplectic manifold with an action of a torus T and a compatible involution t. If
M is T-equivariantly formal over R, then the real locus M is Ty-equivariantly formal over F,.

If M is a complex projective space, we have that M satisfies Theorem 1.4 and also b(M) and b(M™) have the
same Betti sum; this implies that M is also T-equivariantly formal. However, the next example exhibits a
symplectic manifold M where Theorem 1.4 applies, but M is not T-equivariantly formal.

Example 1.5. Consider the symplectic manifold (S2, w) where w € H*(S?) is a generator. Let T = S act
on S? as the rotation along the z-axis, set (M, y) = (S? X §?, pjw — pjw) where p;: M — S? is the projection
onto the i-th factor. Let 7 : M — M be the involution given by 7(x,y) = (y, x), then 7 is an anti-symplectic
involution; and consider the action of T on M given by g-(x,y) = (g-x,g~" - ¥), the action is compatible with
the involution and therefore, from Theorems 1.1 and 1.2, H3.(M; R) is free over H*(BT;R) and H;Z(Y; F,)is
free over H*(BT,;F,) where Y = M™ = §2 and T is the 2-torus in 7. This also follows from the Betti sum
criteria; namely, M7 consist of 4-points, and thus b(M) = b(MT) = 4. Also, Y2 consists of two points and
thus 5(Y) = b(Y™?) = 2; however, b(Y) < b(M) and thus the equivariant cohomology H; /2(M ;) is not free
over H*(BZ/2;F,) where the action of Z/2 on M is the one given by the involution 7.

On the other hand, we immediately have a condition for M being 7-equivariantly formal.

Proposition 1.6. Let M be a symplectic manifold with a Hamiltonian action of a torus T and a anti-
symplectic involution . Then M is t-equivariantly formal over F, if and only if b(M) = b(M™) where H
is the 2-subtorus in G = T = Z/2. The latter acts on M via the induced action of T and 1.



By Proposition 1.6, it is enough to assume that X is 7T-equivariantly formal for X© to be T-equivariantly
formal in the symplectic setting. Now in the most general possible case, we have the following question.

Question 1.7. Let X be a T-space together with a compatible involution T. Assume that b(X) < co and
H3.(X;F>) is a free H*(BT;F2)-module. Is H;Z(XT;IPZ) a free H*(BT»;F,)- module where the action of the
2-torus To € T on X7 is the one induced by the action of T on X ?

Without extra assumptions on the space, a negative answer can be given as we will describe in the next
proposition.

Proposition 1.8. There exists a manifold X with an action of T = S' and a compatible involution T such
that X is T-equivariantly formal and the real locus X7 is not equivariantly formal with respect to the induced
action of the 2-torus subgroup T, C T.

Proof. let X = {(u,2) € CxR: juP +|z> =1} =852, 1let T = S' act on X by g - (u, z) = (gu, z); more precisely,
by scalar multiplication in the first factor. Let 7 be the involution 7(u, z) = (i, —z) which is compatible with
the torus action. Notice that X” = {(0, 1), (0, —1)} = §° and X™ = {(~1,0), (1,0)} = S°. Therefore, the action
of T, on X" is the multiplication by +1 and thus it is a free T,-space, this implies that its T,-equivariant
cohomology is not free over H*(BT3). On the other hand, H3.(X) is a free H*(BT)-module since X and X T
have the same Betti sum. ]

One of the main issues of this example is that X° = 0, even assuming X¢ # 0 a counterexample of question
1.7 can be found and its construction is motivated by [Su, 1964, Sec. 5]. First we recall the following well
known construction of topological spaces.

Definition 1.9. Let f : X — Y be a G-map between G-spaces X and Y. The mapping cylinder is defined
as the G-space My = (X x [0, 1]) U Y/ ~ where (x, 1) ~ f(x), with the action given by g - (x,?) = (gx, 1) for
(x,1) € X x [0, 1] and the regular action on Y; notice that it is well defined at the points of the form (x, 1) since
f is a G-map.

The space My is G-homotopic to Y, and therefore H*(My) = H*(Y). Also, the fixed point subspace (M f)G =
M e where f6: X6 — YG. Now let g : X — Z be a G-map and M, the respective mapping cylinder, then the
space My, = My Uxyo) M, has cohomology groups fitting in the long exact sequence

0— H' M) » HY) @ H'(Z) - H'(X) » H' (Msg) — -

following from the Mayer-Vietoris long exact sequence. Moreover, M, becomes a G-space and (M4)° =
M s 46. In particular, we have

Proposition 1.10. Let m,n,r be different integers, h : S™ — S" a map between spheres and consider
f=hxid: S"xS"—> S"xS"and g: S" xS§" — §™ the projection. Then H* (M) is free over Z[2 where
a copy of Z]2 happens in degree 0,n,m + r + 1,n + r and it is zero otherwise. In particular, b(My,) = 4.

Example 1.11. Let X = S c C2, Y =S cC*and Z = S° c C* Let T = S' act on X and Y by scalar
multiplication on the first component , respectively, and let 7 act on Z by scalar multiplication on the first
and second component and trivially otherwise. Then X = S!, ¥7 = §3and Z" = §°. Let r act on X and Y
as the complex conjugation on the first component respectively, and on Z as the complex conjugation on the
first and second component and multiplication by —1 on the other components. Then X7 = §2, ¥ = S* and
Z7 = §1. Note that the induced action of 7, C T is free on Z7.

Let f : X XZ — Y X Z be the map i X id where i is the inclusion i(u,z) = (4,z,0),and g : X XZ —» X
the projection. Consider the T-space M = My, and the induced action of T on M becomes a compatible
involution. Then b(M) = b(MT) = b(M7) = 4 from Proposition 1.10, but b(M®) = b(M™)"?) = 2.



Example 1.12. Let X = S3,Y = S%2and 4 : X — Y be the Hopf map. This map can be explicitly presented
as h(u,z) = Quz, |ul* — |z>) where S3 is seen as the unit sphere in C? and S? as the unit sphere in C X R.
Let T = S' act on S and S? as the complex multiplication in the first component respectively, and 7 be
the involution on 3 and S? given by the complex conjugation in the first component respectively. Then 7 is
compatible with the torus action and X' =8§! x> 82 y7 = 8§%and Y* = S'. Now let Z = S° be the unit
sphere in C3, let T act on Z by multiplication in the first component and 7 be the involution on Z given by
the complex conjugation in the first component, and multiplication by —1 in the second and third component;
then Z7 = §3 and Z" = SY, notice that the action of the 2-torus T, C T on Z” is free.

Let M = My, be the construction of Proposition 1.10 , then h(M) = b(MT) = b(M?) = 4 and thus M is
T-equivariantly formal; nevertheless, M7 is not T,-equivariantly formal since b((M7)?) = 2 < b(MF).

These examples provide a negative solution for Question 1.7 with non-empty common fixed points of both 7'
and 7. Summarizing we get.

Proposition 1.13. There is a topological space M with an action of a torus T and a compatible involution T
such that M® # 0, M is T-equivariantly formal and Z/2-equivariantly formal, but the real locus M is not
T>-equivariantly formal with respect to the induced action of the 2-torus T, C T on M". O

2 Cohomologically symplectic spaces

Definition 2.1. Let M be a k-Poincare duality space with formal dimension 2n. We say that M is a c-
symplectic space (cohomologically symplectic), if there is a class w € H>(M;k) such that " # 0.

Notice that any compact symplectic manifold is a c-symplectic space; however, there exists c-symplectic
spaces which do not admit a symplectic structure. For instance, the connected sum CP?#CP? is c-symplectic
but it does not admit a symplectic form [Audin, 1991, Prop 1.3.1].

Definition 2.2. A c-symplectic space M satisfies the weak Lefschetz condition if the multiplication by "
induces an isomorphism H (M; k) = H*"'(M; k). Moreover, if the multiplication by «" induces an isomor-
phism H""(M;k) = H"™"(M;k) for r = 1,...,n — 1. we say that M satisfies the strong Lefschetz condition.
Since any Kéhler manifold satisfies the strong Lefschetz condition, we define analogously the cohomological
version. More precisely, a c-symplectic space satisfying the strong Lefschetz condition is called a c-Kéahler
(cohomologically-Kihler) space.

An important property of the c-Kidhler spaces is a condition over its Betti numbers, as we remark in the
following result.

Proposition 2.3. Let M be a c-Kdihler space, then the odd Betti numbers byi.1 (M) are even.

Proof. Let s = 2k + 1. From a standard result in symplectic linear algebra, it is enough to show that H*(M)
admits a non-degenerate skew-symmetric bilinear form. Let 1 <r <n—-1besuchthats=n+rors=n-r,
assume without loss of generality the latter. Consider the isomorphism ¢ : H*(M) — H*'~(M) given
by multiplication by w” from the strong Lefschetz condition. Consider the non degenerate pairing given by
Poincaré duality u : H*(M)xH?*"~*(M) — k. Then the bilinear form on H*(M) given by Q(a, b) = u(a, ¢~ (b))
is a non-degenerate skew-symmetric form and thus H*(M) is an even-dimensional vector space. m

Definition 2.4. Let G be a torus if k = Q or a p-torus if k = F,. An action of G on M is said to be
c-Hamiltonian (cohomologically Hamiltonian) if w € Im(i*: H;,(M;k) — H*(M;k)).



Proposition 2.5. Let M be a c-symplectic space with an action of a torus T. Assume that M satisfies the
weak Lefschetz condition and that MT # 0, then the action is c-Hamiltonian.

Proof. We can assume that T is a circle. Consider the spectral sequence associated to the fibration M —
My; — BT, write dy(w) = x - ¢ € H' (M) ® H*(BT) where ¢ € H*(BT) is a generator. Since M is a Poincare
duality space and M” # 0, " € Im(H; (M) — H*(M)) and thus 0 = d>(w") = nw"'x - ¢. From the weak
Lefschetz condition we get that x = 0 and so d>(w) = 0. Since this is the only possible non-zero differential
on w, we get w € Im(H;. (M) — H*(M)). m]

In the case of symplectic manifolds, the Hamiltonian torus action and c-Hamiltonian torus action are the
same. This can be shown using the Cartan model for equivariant cohomology. [Mukherjee, 2005, Prop.
1.5.6]

Theorem 2.6. Let M be a symplectic manifold with an action of a torus T. The action is Hamiltonian if and
only if it is c-Hamiltonian.

From Theorem 1.1 we get that a Hamiltonian torus action is equivariantly formal. On the other hand, if
M is T-equivariantly formal, the map H}.(M) — H*(M) is surjective and thus the action is c-Hamiltonian.
Therefore, from 2.6 we obtain the following result.

Corollary 2.7. Let M be a symplectic manifold with an action of a torus T. The action is Hamiltonian if and
only if M is T-equivariantly formal.

The following lemma, whose proof requires standard results in algebraic top logy, will allow us to construct
further examples.

Lemma 2.8.

(a) Let M and N be connected k-orientable manifolds of the same dimension n. Then b;(M#N) = b;(M) +
bi(N) fori # 0,n and bo(M) = b,(M) = 1.

(b) Let M be a connected manifold of dimension n > 2. Denote by M the manifold obtained by “attaching a
handle” on M; more precisely, remove two open sets U,V = D" of M and then glue a cylinder S"! x I
along the common boundary S U S Then, bi(M) = b,~(1\7l)f0ri #n—1,1; moreover, when n > 2
we have that bj(M) = bj(M) + 1 for j = 1,n— 1 and if n = 2 we have by(M) = by (M) + 2.

Proof. Let C denote the gluing cylinder in both cases. To prove (a), observe that collapsing C into a point
we get an isomorphism H*(M#N, C) = H*(M#N)/C,C) = H*(M Vv N). Using the cohomology lgng exact
sequence for the pair (M#N, C) and that H*(C) = H*(S"~'") we have immediately that H(M#N) = H'(M V N)
for i # n,n — 1. To compute the remaining degrees, we look at the short exact sequence

0— H" ' (MV N) — H"\(M#N) — H"'(S"™") - H"(M Vv N) — H"(M#N) - 0

where the map H"(M vV N) — H"(M#N) coincides with the surjective map k ® k — k as M, N and M#N
are k-orientable and thus H"' (M v N) = H™'(M#N). To prove (b) we use the Mayer-Vietoris long exact
sequence. We write M = N U S where N is homeomorphic to M with two discs removed U and V, and
S = S"1; also we have that the intersection N NS = S~ 11 §"~!. Therefore, the Mayer-Vietoris long exact
sequence yields

0ok — HI(M) N HI(N)®H1(SH71) — Hl(snfl)eaHl(Snfl) — ...

RN Hﬂ—l(ﬁ) N Hn_](N)@Hn_l(Sn_]) - Hn—l(Sn—l)eaHn—l(Sn—])



— H'(M) —> H"(N) - 0

Therefore, b,-(M) = b;(N) fori # 1, bl(]l?) = bi(N) + 1 and b,,(]\?) = 1. It only remains to compute the Betti
numbers of N. To do so, we use again the Mayer-Vietoris sequence for the decomposition M = N U W where
W =UUV = D"UD". In this case, the sequence give us b;(N) = b;(M) fori # n—1,n, b,_;(N) = b, (M) +1
and b,(N) = 0. The statement of the lemma follows by combining the results from the two sequences
discussed above. O

If M is a c-symplectic space which is T-equivariantly formal, then the action is automatically c-Hamiltonian.
However, if M admits a c-Hamiltonian action of a torus 7, it is not necessarily 7-equivariantly formal; as we
state in the following proposition.

Proposition 2.9 (C. Allday [Allday, 1998]). There exist a c-symplectic space M satisfying the weak Lef-
schetz condition together with a c-Hamiltonian action of a circle T and b(M") < b(M). Thus M is not
T -equivariantly formal.

Proof. Let T = S' act freely on X = S* x §3. By the equivariant tubular neighborhood consider a tube
U = S' x D around an orbit where T acts by multiplication on the first factor. Remove the interior of the
tube and glue D? x S*, where T acts by rotations on the first factor. Call the resulting manifold N, then
N is a T-space where N7 = §*. Using the Mayer-Vietoris long exact sequence, we obtain that the Betti
numbers of H*(N;Q) are 1,0,1,2,1,0,1 in degree O, 1, ..., 6 respectively; in fact, let Ny = X \ U which
is homeomorphic to §* x §* with an orbit removed around a chosen point. Let V = S! x D’ be such that
X =NoUVand NgnV = S! x (D \ {0}) which has the homotopy type of S! x S*. Applying the Mayer-
Vietoris long exact sequence for such decomposition we get that H*(Np) has dimension 1,0,0,2,1,0,0 in
degree 0, 1, ..., 6 respectively. Now, N is constructed by gluing Ny and D?> x §* along the common boundary
S1x §*, this provides a decomposition of N into open sets U C V such that U = Ny, V = S*, U UV = N and
UNV=S8"xS* From the Mayer-Vietoris long exact sequence the Betti numbers of H*(N; Q) are the ones
stated above.

Now let T acton CP3 by g-[z0 : 21 : 22 : 23] = [820 : 21 : 22 : 23], so the fixed point subspace is homeomorphic
to p LICP? where p = [1:0:0:0]. Let M = N#CP? be the equivariant connected sum formed by removing
T-invariant discs around fixed points of p € N = §* € N and y € (CP*)" = CP?> C CP?; the existence
of the T-invariant discs follows from the Equivariant tubular neighborhood theorem (Theorem ??). This
implies then that b(M) = 8. Notice that M® = p U (S*#CP?) = p U CP?; moreover, the non-trivial form
w € H*(CP?; Q) induces a non trivial form & € H*(M;Q) such that @* # 0, so M is a c-symplectic space.
Moreover, since CP? is T-equivariantly formal, the lifting of the class w to H;(CP3 ; Q) induces a lifting of @
to H7.(M; Q) and thus the action of T on M is c-Hamiltonian. However, since b(M TY=4<b(M) =8, Mis
not T-equivariantly formal and therefore Theorem 1.1 does not hold in the case of c-symplectic spaces. O

Even though we may consider formal Hamiltonian torus action on c-symplectic spaces, Question 1.7 in the
setting of c-symplectic spaces does not have a positive solution. The example will be constructed in a similar
fashion as in Proposition 2.9.

Proposition 2.10. There exists a c-symplectic space M with a torus action of T and a compatible c-antisymplectic
involution T such that M is T-equivariantly formal over Q and the real locus M" is not equivariantly formal
over B, with respect to the induced action of the 2-torus subgroup T, C T.

Proof. LetT = S, consider the T-action on §* € CxC given by g-(u, z) = (gu, z) and the involution 7 defined
as 7(u,z) = (i, —z), then 7 is compatible with the T-action and we have an induced action of G = T ~ Z/2;



moreover, (S*)7 = S! c {0} x Cand (S3)" = S € Cx{0}. Let X = §3 x §3 be the G-space with the induced
diagonal action, let Y = CP? be the G-space with the action given by g-[z0 : 21 : 2o : 23] = [820 : 821 : 22 : 23]
for g¢ € T and the involution 7 defined as the complex conjugation, then X7 = S! x §!, X™ = §0 x §0,
YT = CP'UCP', Y™ = RP3. Notice that the induced T, = Z/2-action on X7 is free while (Y7)"> = RP'LURP'.

Choose points x € X7 \ X" and y € Y7 \ Y, then the orbit spaces G - x = G - y consist of two points and
the stabilizers G, = G, = T. By the equivariant tubular neighborhood theorem (Theorem ??), there exist
U C X, V C Y G-invariant neighborhoods of x and y respectively such that U = V = D° x Z/2, T acts by
scalar multiplication on the complex components of D® C (C x R)? and 7 is the complex conjugation on D°
on the complex components, and multiplication by —1 on the real components and the Z/2 factor. Let M be
the space obtained as “a double connected sum” by removing U and V from X and Y respectively and gluing
the spaces X \ U and Y \ V along a double cylinder I x S3 x Z/2 where G acts trivially on the unit interval
I and on S x Z/2 as the restriction of the action on the boundary of D x Z/2 described above. Note that
M can be obtained by attaching a handle to the connected sum X#Y. Therefore, from Lemma 2.8, the Betti
numbers of M are 1,1,1,2,1,1,1 in degree O, 1, ..., 6 respectively and thus b(M) = 8. We have also that
MT = My LICP! where M is homeomorphic to a “double connected sum” between S I'xS1 and CP', which
is indeed homeomorphic to a genus 2 surface. Therefore, b(M”) = b(My) + b(CP') = 6 + 2 = 8 so M is
a T equivariantly formal space. Moreover, the symplectic form Q € H*(CP?) induces a c-symplectic form
w € H*(M) which admits an equivariant lifting @ € H%(M) and thus the action of 7 on M is c-Hamiltonian.
On the other hand, M™ = (S° x §°) LU RP? and thus b(M7) = 4 + 4 = 8; however, (M")™> = RP' URP! and
b((M™)T2) = 4, that is, M7 is not equivariantly formal with respect to the T»-action. ]

This example is a c-symplectic space which does not satisfy the weak Lefschetz condition, that is, the mul-
tiplication by w? : H'(M) — H>(M) is clearly zero. Indeed, since H>(M) is generated by the elements
a,b € H*(S3xS3) and in the cohomology of the connected sum H*(S xS 3#CP3) we have that a-w = b-w = 0,
the same equation holds in the cohomology H*(M). This implies that for the generator x € H'(M) we have
X-w = Aja+ b for some A, 1, € {0, 1} and thus x - w? = 0.

In the case of c-Kihler spaces, any torus action with non empty fixed points is formal and thus c-Hamiltonian.
This follows from this stronger result due to A. Blanchard [Blanchard, 1956, Thm. II.1.2].

Theorem 2.11. Let X be c-Kdhler space (over a field k) and X — E — B be a fiber bundle. Consider
cohomology with coefficients over a field k. Suppose that 7\(B) acts trivially in the cohomology H*(F'), then
the Serre spectral sequence collapses and

H*(E) = H*(B) ® H*(X).

As an immediate result, for any connected group K acting on X, if the fixed point subspace X¥ # 0, X is
K-equivariantly formal. Now we can prove Duistermaat’s theorem in the case of c-Kéhler spaces.

Proposition 2.12. Let X be a c-Kdhler space (over k = F,) with an action of a torus T an a compatible
anti-symplectic involution . Assume that T acts trivially in the cohomology of X. Then X is T-equivariantly
formal over k and the real locus X" is T, equivariantly formal over k.

Proof. From Blanchard’s result, we have that X is T-equivariantly formal over k. This implies that it is also
T»-equivariantly formal by Corollary ?? and so T, acts trivially on the cohomology of X. By assumption, 7
acts trivially on the cohomology of X as well and thus the group H = T, X 7 acts trivially in the cohomology
of X. Using again Theorem 2.11 we obtain that X is H-equivariantly formal. Finally, the T,-equivariant
formality of the real locus X follows from Theorem ??. O
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