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Introduction

At the development of the algebraic topology in the 20th century, mathematicians were interested in relat-
ing homotopy and homology invariants to topology and smoothness of spaces. In 1900, Henry Poincaré,
studying the topological properties of the standard 3-sphere, claimed that a manifold with the same
homology as S3 must be actually homeomorphic to the sphere. Later, he answered his own question by
constructing a homology sphere with non-zero fundamental group. This is a classical example in alge-
braic topology and it is known as the Poincaré Sphere. So, he modified the claim by conjecturing that a
compact, oriented and connected manifold space with the same homotopy as S3 is a space homeomorphic
to the sphere. This problem was known as the Poincaré Conjecture, and remained open for more than a
century.

Poincaré’s statement was generalized to higher dimensions, known as the Generalized Poincaré Conjec-
ture: A compact, connected and oriented topological space with the homotopy type as Sn (or a Homotopy
Sphere), is homeomorphic to the n-dimensional euclidean sphere. Note that by the Hurewicz Theorem,
a space is a homotopy sphere if and only if it is a homology sphere and simply connected. Moreover,
since it was believed that the sphere had an unique smooth structure, the Conjecture turned into the
statement that a Homotopy sphere is diffeomorphic to Sn (the n-dimensional sphere with the standard
smooth structure).

So, the “exotic” differentiable structures over Sn were presumed non-existent until 1956, when J. Milnor
[M1] constructed a 7-dimensional manifold homeomorphic to the sphere which is non-diffeomorphic to
S7, yielding to a complete theory about the study of this kind of manifolds known as Exotic Spheres.

The study of the Generalized Poincaré Conjecture and exotic spheres have in common the tools pro-
vided by Cobordism Theory, which allows to distinguish between manifolds homeomorphic but non-
diffeomorphic to the sphere. The first remarkable result is the Thom–Pontryagin theorem, where the
cobordism and the homotopy are intrinsically related, and this theorem gives rise to corollary results as
the characterization of the stable homotopy groups πn+k(Sk) as framed cobordism and the Hirzebruch
Signature Theorem.

With this theory at hand, in 1952, S. Smale proved the the following result:

The h-cobordism Theorem
Let M ,N be smooth and simply connected n-dimensional manifolds with n ≥ 5. If W is a compact
h-cobordism between M and N , then W is diffeomorphic to M × [0, 1].

The Generalized Poincaré Conjecture for the case n ≥ 5 follows immediately from this result. Later,
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in 1982, M. Freedman provided a proof for the case n = 4. Finally, G. Perelman solved the Poincaré’s
Conjecture in 2006.

The h-cobordism theorem, which allows to characterize the topology of the spheres by its homotopy
type, also provides tools for distinguishing the exotic smooth structures over the spheres. M. Kervaire
and J. Milnor consider the class of topological n-dimensional spheres under the equivalence relation of h-
cobordism, which coincides with the class of topological spheres under the diffeomorphism relation. This
set has a group structure given by the connected sum operation, it is a finite group and it is explicitly
computable for many values of n.

In other words, the number of n-dimensional exotic spheres is finite (up to diffeomorphism).

The above results are condensed in Homotopy Groups of Spheres I [KM], but many results and proofs
are left for a second paper Homotopy Groups of Spheres II which never was published. Although the
problem of different smooth structures over Sn is almost completely solved, 1 the main aim of this work
is to complete the lacking content in [KM] and provide an step-by-step study of the exotic spheres theory.

So, in Chapter 2 the generalities of the cobordism theory, the proof of the Thom–Pontryagin theorem and
the Hirzebruch Signature Theorem are presented . Later in Chapter 3, different examples of exotic spheres
in suitable dimensions are constructed. Finally the Chapter 4 are focused in determining completely the
groups of exotic spheres, finishing with the explicit computation of the order of this groups in dimensions
less than 30 presented in Chapter 5.

1The number of exotic spheres in dimension 4 is still unknown
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Chapter 1

Preliminaries

1.1 Vector Bundles and Characteristic Classes

This section is made for setting notation and main results related to fundamental theory of vector bundles
and characteristic classes, which will be used throughout the whole work. For a complete treatment in
this topics refer to [MS].

Definition 1.1.1. Let K = R or C. A real (or complex) vector bundle of rank n over X, is a triple

ξ : Kn → E
π−→ X, where E and X are topological spaces, and π : E → X is a continuous map; which

satisfies the following conditions

(i) For any p ∈ X the fibre Fp = π−1(p) of π over p is a vector space isomorphic to K.

(ii) Every p ∈ X has a neighbourhood U , such that there is a homeomorphism

π−1(U) U ×Kn

U U
?

π

-φU

?

pr1

-idU

and the diagram commutes, which means that every fibre Fp is mapped to {p} ×K.

(iii) φU �Fp : Fp → K is an isomorphism of vector spaces.

Proposition 1.1.2. Let X be a topological space. The following are examples of vector bundles over X.

1. The trivial bundle εn : Kn → Kn ×X → X.

2. If η : Kn → F
π−→ Y is a vector bundle and f : X → Y is a continuous function, the pullback of η

is the bundle f∗η : Kn → E → X, where E is the set of all pairs (b, e) ∈ X × F with f(b) = π(e)

3. If X = M a smooth n-dimensional manifold, the tangent bundle Rn → TM →M .

4. If X = M a smooth n-dimensional manifold and i : M ↪→ Rn+k is an embedding, the normal
bundle ν(i) : Rk → E → M where the space E ⊆ M × Rn is the set of all pairs (x, v) such that v
is orthogonal to the tangent space TxM .
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1.1 Vector Bundles and Characteristic Classes

Proposition 1.1.3. Let f, g : X → Y be continuous maps and ξ a vector bundle over Y . If f and g are
homotopic, then f∗ξ ∼= g∗ξ.

Definition 1.1.4. Let ξ1, ξ2 two vector bundles over the same base space B. Let d : B → B×B denote
the diagonal embedding. The bundle d∗(ξ1 × ξ2) over B is called the Whitney sum of ξ1 and ξ2, and
it will be denoted by ξ1 ⊕ ξ2, since each fiber Eb(ξ1 ⊕ ξ2) is canonically isomorphic to the direct sum
Eb(ξ1)⊕ Eb(ξ2).

Example 1.1.5. Let M be a smooth manifold and i : M ↪→ RN an embedding. We have that TM ⊕
νM (i) ∼= RN ×M , that is, the Whitney sum of the normal bundle and the tangent bundle of a manifold
is trivial.

Definition 1.1.6. A framing ϕ of a n-dimensional vector bundle ξ is an isomorphism ϕ : ξ ∼= εn. In this
case, we say that the bundle ξ is trivializable with a choice of trivialization.

Denote by tn the standard framing of εn.

Definition 1.1.7. Let M be a smooth manifold. M is parallelizable if the bundle TM is trivializable.
M is said stably parallelizable if the bundle TM ⊕ ε1 is trivializable.

Recall that the Euclidean sphere Sn is stably parallelizable.

Theorem 1.1.8. Let M be a n-dimensional smooth manifold with boundary. M is stably parallelizable
if and only if M is parallelizable.

It is known that the set of all n-dimensional planes through the origin of the space Rn+k denoted by
Grn(Rn+k), is a compact manifold of dimension nk. It is called the Grasmann manifold. Recall that for
the case n = 1, Gr1(Rk+1) is equal to the real projective space RP k.

There is a canonical vector bundle over Grn(Rn+k) denoted by γn(Rn+k). Let E be the set of all pairs
(X, v) such that X is a n-plane in Rn+k and v ∈ X. The projection map E → Grn(Rk) is defined by
π(X, v) = X. The fiber EX over X, is canonically isomorphic to X.

Let R∞ denote the vector space consisting of those sequences x = (x1, x2, . . .) of real numbers for which all
but a finite number of the xi are zero. For a fixed k, the subspace consisting of all x = (x1, . . . , xk, 0, . . .)
will be identified with the coordinate space Rk. Thus R1 ⊆ R2 ⊆ · · · with union R∞.

Definition 1.1.9. The infinite Grassmann manifold BO(n) = Grn(R∞) is the set of all n-dimensional
linear subspaces of R∞, topologized as the direct limit of the sequence

Grn(Rn) ↪→ Grn(Rn+1) ↪→ Grn(Rn+2) ↪→ · · ·

A canonical bundle γn over BO(n) is constructed just as in the finite dimensional case.

Theorem 1.1.10. Let ξ be an n-plane bundle over a paracompact base B. Then there exists a map

B
fξ−→ BO(n) such that f∗γn ∼= ξ. Furthermore, if ξ ∼= η, then the maps fξ, fη are homotopic.

Corollary 1.1.11. For any topological spaceX, the set of n-dimensional real vector bundles of overX (up
to isomorphism) is in a bijective correspondence with the set of homotopy class of maps X → BO(n).
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1.1 Vector Bundles and Characteristic Classes

In the above notation, fξ is the classifying map of the bundle ξ. Sometimes the classifying map of a
bundle will be denoted by the bundle itself, that is, for a bundle ξ, the notation for its classifying map is

X
ξ−→ BO(n).

Definition 1.1.12. The Stiefel-Whitney classes satisfy the following axioms:

(A1) To each vector bundle ξ there corresponds a sequence of cohomology classes

wi(ξ) ∈ Hi(X,Z2),

for i = 0, 1, · · · . The class w0(ξ) is equal to the unit element

1 ∈ H0(X,Z2)

and wi(ξ) equals zero for i greater than n if ξ is an n-plane bundle.

(A2) If f : B(ξ)→ B(η) is a map such that f∗η ∼= ξ, then

wi(ξ) = f∗wi(η).

(A3) If ξ and η are vector bundles over the same base space, then

wk(ξ ⊕ η) =

k∑
i=0

wi(ξ) ∪ wk−i(η).

(A4) For the line bundle γ1(RP 1), the Stiefel-Whitney class wi(γ
1(RP 1)) is non zero.

Definition 1.1.13. The Thom Space of a real vector bundle ξ over a compact space X, denoted by Tξ is
defined to be the one-point compactification of the space E, this point will be denoted by t0(ξ). We write
MO(k), for the Thom space Tγk. Suppose there is a vector bundle η over a space C and a continuous
map g : B → C. If we let ξ = g∗η, then g induces a map Tg : (Tξ, t0(ξ))→ (Tη, t0(η)).

Theorem 1.1.14. There is an isomorphism H̃n+k(Tξ,Z2) ∼= Hk(B,Z2) for any n-dimensional vector
bundle ξ.

Definition 1.1.15. Let M be a n-dimensional smooth manifold and let N be a closed smooth manifold.
Let g : M → (Tξ − t0) be a smooth map, where ξ is a k-dimensional bundle over N . Then g is said to
be transverse at the inclusion given by the zero-section N ↪→ Tξ if for all x ∈ g−1(N)

Im(dgx) + Tg(x)N = Tg(x)(Tξ − t0).

In particular, g−1(N) ⊆M is a closed (n− k)-dimensional submanifold.

Theorem 1.1.16 (Transversality Theorem). With the above notation, every smooth map M → (Tξ−t0)
is homotopic to a map g : M → Tξ which is transverse at the zero section.

An orientation on a real vector space V of dimension n is a choice of an equivalence class of ordered
bases, where two bases are equivalent if there exists a linear transformation with positive determinant
which send a basis onto the other one. Then, there are two possible orientations on a real vector space.

This is equivalent to a choice of a generator µV ∈ Hn(V, V0,Z) ∼= Z where V0 = V − 0. It gives rise to a
generator uV ∈ Hn(V, V0,Z) ∼= Z by the relation 〈uV , µV 〉 = 1.
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1.1 Vector Bundles and Characteristic Classes

Definition 1.1.17. An orientation on a n-plane bundle ξ, is a choice of orientation on each fiber satisfying
the usual local triviality condition: For every point b ∈ B(ξ), there exist a local coordinate system (N,h)
with b ∈ N and h : N × RN → π−1(N) with each fiber Fc over N , the homomorphism x 7→ h(x, c) from
RN to Fc is orientation preserving.

For any n-plane bundle ξ, let E0 be the set of all non-zero elements of E and let F0 be the set of all
non-zero elements of a fiber F = π−1(b).

Theorem 1.1.18 (Oriented Thom Isomorphism theorem). Let ξ be an oriented n-plane bundle with
total space E. Then the cohomology group Hi(E,E0,Z) is zero for i < n and Hn(E,E0,Z) contains an
unique cohomology class uξ (the Thom class) whose restriction

uξ|(F,F0) ∈ Hn(F, F0,Z),

is equal to the generator uF for every fiber F of ξ. Furthermore, the correspondence x 7→ x ∪ u defines
an isomorphism from Hk(E,Z) to Hk+n(E,E0,Z) for every integer k.

For an oriented n-plane bundle ξ = (E,B, π) , the oriented Thom isomorphism ϕ : Hi(B,Z) →
Hi+n(E,E0,Z) is defined by ϕ(x) = π∗(x) ∪ uξ.

Definition 1.1.19. Let ξ be an oriented n-plane bundle over B. The Euler class e(ξ) ∈ Hn(B,Z) is
defined by

e(ξ) = ϕ−1(uξ ∪ uξ).

That is, π∗e(ξ) = uξ|E

Remark. The Euler class has many similar properties of Stiefel Whitney classes. Some of them are
listed here.

1. If f : B(ξ)→ B(η) is covered by an orientation preserving bundle map form ξ to η, then

e(ξ) = f∗e(η).

2. If ξ and η are oriented vector bundles over the same base space, then

e(ξ ⊕ η) = e(ξ) ∪ e(η).

3. If the orientation of a oriented vector bundle ξ es reversed, then the Euler class changes sign.

4. If ξ is an oriented n-plane bundle with n odd, then 2e(ξ) = 0.

5. Let ξ be an oriented vector bundle over the base space B. The canonical map Hn(B,Z) →
Hn(B,Z2) sends e(ξ) to wn(ξ).

A final application of the Euler class is the construction of an oriented Gysin sequence.

Proposition 1.1.20 (Oriented Gysin Sequence). Let ξ be an oriented n-plane bundle with projection
π : E → B. Let π0 : E0 → B be the restriction of π to E0. Then for any coefficient ring R, there is a
long exact sequence

· · · → Hi(B,R)
∪e−−→ Hi+n(B,R)

π∗0−→ Hi+n(E0, R)→

where e denotes the image of e(ξ) in Hn(B,R) under the homomorphism of cohomology induced by the
ring map Z→ R.
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1.1 Vector Bundles and Characteristic Classes

Remark. Note that given any complex n-plane bundle ω, we can forget the complex structure and
consider each fiber as a real vector space of dimension 2n. Thus we obtain the underlying real 2n-plane
bundle ωR. If v1, · · · , vn is a C-basis for a fiber F of ω, we take v1, iv1, · · · , vn, ivn to be an R-basis for
F as a fiber of ωR. So we have the following result.
For a complex n-plane bundle ω with total space E, we define a (n−1)-plane bundle ω0 over E0 as follows.
Given a pair (b, v) ∈ E0, v ∈ Fb, v 6= 0, let the fiber over (b, v) in ω0 be the orthogonal complement of v
in Fb.

Proposition 1.1.21. If ω is a complex vector bundle, then the underlying real vector bundle ωR has a
canonical preferred orientation.

Definition 1.1.22. Let ω be a complex n-plane bundle over B. For i ≤ n, the ith Chern class ci(ω) ∈
H2i(B,Z) is defined inductively as follows: Set cn(ω) = e(ωR). For i < n. Set ci(ω) = π−1

0 ci(ω0). For
i > n, set ci(ω) = 0.

The Chern classes satisfy the following properties

1. If f : B(ω)→ B(ω′) is covered by a bundle map form ω to ω′, then

c(ω′) = f∗c(ω).

2. If ω and ω′ are complex vector bundles over the same base space, then

c(ω ⊕ ω′) = c(ω)c(ω′).

3. The conjugate bundle ω has Chern classes

ci(ω) = (−1)ici(ω).

Let ξ be a real n-plane bundle. The complexification of ξ is defined by the complex n-plane bundle with
the same base space and fiber F ⊗R C, where F denotes a fiber of ξ.

It is clear that (ξ ⊗R C)R ∼= ξ ⊕ ξ, and also we have ξ ⊗R C ∼= ξ ⊗R C, since the conjugation is a R-linear
homomorphism. Therefore, since ci(ξ ⊗R C) = (−1)ici(ξ ⊗R C), the odd Chern classes c1, c3, · · · of the
complexification of a real vector bundle are 2-torsion elements.

Definition 1.1.23. Let ξ be an n-plane bundle over B. The ith Pontryagin class pi(ξ) ∈ H4i(B,Z) is
defined by

pi(ξ) = (−1)ic2i(ξ ⊗R C).

The total Pontryagin class p(ξ) ∈ H∗(B,Z) is the cohomology class

p(ξ) = p1(ξ) + · · ·+ p[n/2](ξ).

The properties of Pontryagin classes follows from those of Chern classes. We list some of them here.

1. If f : B(ξ)→ B(η) is covered by a bundle map from ξ to η, then

p(ξ) = f∗p(η).
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1.1 Vector Bundles and Characteristic Classes

2. If ξ and η are vector bundles over the same base space, then

2p(ξ ⊕ η) = 2p(ξ)p(η).

There is a relation between the Pontryagin classes with the Euler class.

Proposition 1.1.24. If ξ is an oriented 2n-plane bundle, then pn(ξ) = e(ξ)2.

Theorem 1.1.25. Let R be an integral domain containing 1
2 . Let pi the image of pi(γ̃

n) and e the image
of e(γ̃n) under the cohomology map induced by the ring map Z→ R. Then for odd n,

H∗(BSO(n), R) ∼= R[p1, . . . , pn−1
2

],

and for even n,
H∗(BSO(n), R) ∼= R[p1, . . . , pn−2

2
, e].

Corollary 1.1.26. Hi(BSO(n),Z) if finite if i is not divisible by 4 and has rank p(i/4) if i is divisible
by 4.

Given any partition I of n, there exist an unique polynomial sI ∈ Z[t1, . . . , tn] satisfying

sI(σ1, · · · , σn) =
∑

tI =
∑

tr11 · · · t
rk
k ,

where the
∑

indicates that we take every monomial that can be formed with exponents exactly (r1, · · · , rk).
And σ1, · · · , σn are the elementary symmetric functions of the ring Z[t1, . . . , tn].

Definition 1.1.27. Let M be a compact oriented manifold of dimension 4n. There is a fundamental
homology class µM ∈ H4n(M,Z). For any vector bundle ξ over M and any partition I = (i1, . . . , ik) of
n, we define a Pontryagin number

PI [ξ] = 〈pi1(ξ) · · · pik(ξ), µM 〉 ∈ Z,

and a s-number
SI [p(ξ)] = 〈sI(p1(ξ), . . . , pn(ξ)), µM 〉 ∈ Z.

Proposition 1.1.28. Let ξ and η be vector bundles over M . Then

2sI(p(ξ ⊗ η)) = 2
∑

I1I2=I

sI1(p(ξ))sI2(p(η)).

If ξ′ is a vector bundle over another manifold N , then

SI [p(ξ × η)] =
∑

I1I2=I

SI1 [p(ξ)]SI2 [p(η)].

Example 1.1.29. Let τ = TCPn, τR ⊗ C ∼= τ ⊕ τ , thus

c(τR ⊗ C) = c(τ ⊕ τ)

1 + c2(τR ⊗ C) + · · ·+ c2n(τR ⊗ C) = c(τ)c(τ)

1− p1(τR) + p2(τR)− · · · ± pn(τR) = (1− x)n+1(1 + x)n+1

p(τR) = (1 + x2)n+1

Therefore
P(n)[τR] = n+ 1
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1.2 Homotopy Groups

Let G̃rn(Rn+k) denote the Grassmann manifold consisting of all oriented n-planes in Rn+k. This can be

topologized in order to give a manifold structure of dimension nk. G̃rn(Rn+k) is a double covering of the
unoriented Grassmann manifold Grn(Rn+k). Passing to the direct limit k →∞, we obtain the oriented
infinite Grassmann manifold

BSO(n) = lim
k→∞

G̃rn(Rn+k).

The covering map fn : BSO(n)→ BO(n) lifts to an oriented n-plane bundle over BSO(n), f∗nγ
n = γ̃n.

Proposition 1.1.30. Let B be a topological space. There is a bijective correspondence between the
homotopy class [B,BSO(n)] and the set of oriented n-plane bundles over B (up to isomorphism).

Definition 1.1.31. Let K = R or C. The Stiefel Manifold Stn,k(K) is the set consisting of k-tuples
v = (v1, . . . , vk) of orthonormal vectors in Kn, under the equivalence relation v ∼ w if and only if
Span(v) = Span(w).

Proposition 1.1.32. There are diffeomorphism Stn,k(R) ∼= O(n)/O(n−k) and Stn,k(C) ∼= U(n)/U(n−
k). Furthermore, Stn,k(R) is (n− k − 1) connected.

Theorem 1.1.33. Let B a CW-complex of dimension n and let ξ be an n-dimensional real vector bundle
over B. There exists a framing of ξ over the j-skeleton of B if and only if a certain well defined obstruction
class

σj(ξ) ∈ Hj(B, πj−1(Stn,n−j+1(R)))

is zero.

1.2 Homotopy Groups

Let Gn denote one of the following groups: O(n), SO(n) or U(n). There are natural inclusions Gn
in
↪−→

Gn+1 and define the direct limit associated to these sequence as

G = lim
n→∞

Gn

The following theorem is due to Bott [Bt]

Theorem 1.2.1 (Bott Periodicity Theorem). 1. π∗(U) is periodic with period 2, π0(U) = 0, π1(U) =
Z.

2. π∗(O) is periodic with period 8 and the homotopy groups are

n mod 8 0 1 2 3 4 5 6 7
πn(O) Z2 Z2 0 Z 0 0 0 Z

3. For all n, there are isomorphism
πn(U/SO) ∼= πn−2(SO)

Moreover, Borel-Hirzebruch [BH] prove that

π2n(U(n)) ∼= Zn!

for n > 0.
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1.2 Homotopy Groups

Together with the Freundenthal Suspension Theorem, another important result about homotopy groups
of spheres was proved by Serre. [Sr]

Theorem 1.2.2. For k ≥ n+2, the homotopy group πn+k(Sk) is independent of k. Moreover, the group
πn+k(Sk) is finite.

This group is denoted the nth-stable homotopy group of spheres, Πn.
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Chapter 2

Thom–Pontryagin Theorem

In his Ph.D. thesis [Th], René Thom, relates cobordism theory with stable homotopy theory, and since
the Thom–Pontryagin theorem was initially intended as an approach to the computation of homotopy
groups of spheres, the application to yield information about manifolds shows that it is highly productive.

2.1 Cobordism Categories

Definition 2.1.1. A cobordism category (C, ∂, i) is a triple satisfying:

1. C a category having finite sums (coproducts) and an initial object ∅.

2. ∂ : C→ C an additive functor with ∂∂M = ∅ for any object M and ∂∅ = ∅.

3. i : ∂ → Id a natural transformation of additive functors, where Id denotes the identity functor.

4. C has a essentially small subcategory C0 (a Set) such that each element of C is isomorphic to an
element of C0.

Example 2.1.2. In the case of the category of differentiable manifolds, where the sum operation is given
by disjoint union, we take ∅ to be the empty manifold and i to be given by the inclusion of ∂M in M .
The existence of a small subcategory follows from the Whitney embedding theorem.

The fundamental notion in cobordism is the following equivalence relation.

Definition 2.1.3. In a cobordism category, two objects M , N are cobordant, M ≡ N if there exist
objects V,W such that M + ∂V ∼= N + ∂W .

This relation of cobordism has these properties.

Proposition 2.1.4. 1. ≡ is an equivalence relation on C, and the equivalence classes form a set.

2. If M ≡ N then ∂M ∼= ∂N .

3. For all M , ∂M ≡ ∅.

4. If M ∼= N and M ′ ∼= N ′ then M +M ′ ∼= N +N ′.

Proof.

9



2.1 Cobordism Categories

1. Reflexivity and symmetry follow from the properties of isomorphism. For transitivity, suppose
that M ≡ N and N ≡ L, then there exist objects U, V,X, Y of C with M + ∂U ∼= N + ∂V , and
N + ∂X ∼= L+ ∂Y . So

M + ∂(U +X) ∼= M + ∂U + ∂X
∼= N + ∂V + ∂X
∼= L+ ∂V + ∂Y
∼= L+ ∂(V + Y ).

The fact that the equivalence classes form a set follows from the existence of the small subcategory
C0.

2. If M ≡ N , then there exists objects X,Y with M + ∂X ∼= N + ∂Y . Then

∂M ∼= ∂M + ∅
∼= ∂M + ∂∂X
∼= ∂(M + ∂X)
∼= ∂(N + ∂Y )
∼= ∂N + ∂∂Y
∼= ∂N + ∅ ∼= ∂N.

3. ∂M + ∂∅ ∼= ∅+ ∂M , since ∂∅ = ∅. Therefore ∂M ≡ ∅.

4. We have M + ∂X ∼= N + ∂Y and M ′ + ∂X ′ ∼= N ′ + ∂Y ′, for some objects X,X ′, Y, Y ′. Then we
have M +M ′ + ∂(X +X ′) ∼= N +N ′ + ∂(Y + Y ′).

In the case of differentiable manifolds, the original definition of cobordism states that two manifolds
without boundaryM,N are cobordant, if there exist a manifoldW with boundary such thatM+N ∼= ∂W .
Now we show that these two definitions are equivalent.

Proposition 2.1.5. In the case of manifolds without boundary, categorical definition for cobordism
agrees with the original one.

Proof. Suppose that M and N are cobordant in the categorical sense. Then there exist manifolds X,Y
with M + ∂X ∼= N + ∂Y . Let W1 = M × I + X and W2 = N × I + Y . Since M ≡ N , W1 and W2 can
be glued along that common boundary to form a manifold W with ∂W ∼= M +N .
Conversely, now suppose that there exist a manifold W such that ∂W ∼= M + N . Then M + ∂W ∼=
M +M +N ∼= N + ∂(M × I). So M ≡ N .

Indeed, the set of equivalence classes of the cobordism relation form a semigroup, as we will show with
the following definitions and results.

Definition 2.1.6. An object M of C is closed if ∂M ∼= ∅. We say M bounds if M ≡ ∅.

Actually, these definitions are compatible with the cobordism relation and sum operation.

Proposition 2.1.7. Let M , N objects in C.

10



2.2 (B, f) Manifolds

1. Suppose M ≡ N . Then M is closed if and only if N is closed, and M bounds if and only if N does.

2. If M and N are both closed, then M +N is closed. If M and N both bound, then M +N bounds.

3. If M bounds then M is closed.

Proof. 1. The statement about closed objects follows from the property 2 in the lemma (2.1.4), and
the statement about bounding objects follows from the fact that ≡ is an equivalence relation.

2. If M and N are closed, then ∂M ∼= ∅ ∼= ∂M . Thus ∂(M +N) ∼= ∂M + ∂N ∼= ∅+ ∅ ∼= ∅. From the
property 4 in the lemma (2.1.4) follows that if M and N both bound, then M +N also bounds.

3. If M bounds then M ≡ ∅. Thus, by property 2 of lemma (2.1.4), ∂M ∼= ∂∅ ∼= ∅. So M is closed.

Now immediately we have the following result.

Theorem 2.1.8. The set of equivalence classes of C under the relation of cobordism has a commutative,
associative operation induced by the addition in C. The class of ∅ provides an identity element for this
operation.

This allows to make this definition.

Definition 2.1.9. The Cobordism Semigroup Ω(C, ∂, i) is the set of equivalence classes of closed objects
of C with the operation induced by the addition in the category.

2.2 (B, f) Manifolds

In order to compute the cobordism semigroups, we need to consider manifolds endowed with additional
structure.

Definition 2.2.1. Let fk : Bk → BO(k) be a fibration 1. Let ξ : M → BO(k) be a k-vector bundle over

M . A (Bk, fk) structure on ξ is an equivalence class of liftings ξ̃ : M → Bk (that is, ξ = fk ◦ ξ̃). This
equivalence relation is given by the homotopy relation.

To give a well defined notion of a (Bk, fk) structure on a manifold M , we will use the Whitney Embedding
theorem to produce and embedding i : M → RN and we proceed to consider (Bk, fk) over the normal
bundle νM (i). However, we need the following lemma to allow us make a definition independent on the
embedding.

Lemma 2.2.2. For a k sufficiently large, there is a bijective correspondence between the (Bk, fk) struc-
tures on the normal bundles νM (i1) and νM (i2) associated to the embeddings i1, i2 : M → Rn+k where
M is an n-dimensional smooth manifold.

Proof. For k sufficiently large, any two embeddings i1, i2 are isotopic by a map H : M × I → Rn+k. The
family of normal bundles (H|M×t)∗(TRn+k/TM) gives a homotopy of νM (i1) and νM (i2). Thus we get
a well defined equivalence relation of the two normal bundles. The bijection follows from the homotopy
lifting theorem.

1A fibration denotes a continuous map p : E → B satisfying the homotopy lifting property

11



2.3 (B, f) Cobordism

Let (B, f) denote a sequence of fibrations fk : Bk → BO(k) together with maps gk : Bk → Bk+1 such
that the diagram commutes.

Bk Bk+1

BO(k) BO(k + 1)
?

fk

-gk

?

fk+1

-jk

Where jk : BO(k) → BO(k + 1) is the inclusion induced by the standard inclusions Gk(Rn+k) ↪→
Gk+1(Rn+k+1).

Now suppose we have a (Bk, fk) structure ν̃M (i) : M → Bk on the normal bundle νM (i) of an embedding
i : M → Rn+k. This induces a (Bk+1, fk+1) structure on the normal bundle νM (i′) of the embedding
i′ = i× 0 : M → Rn+k+1, by setting ν̃M (i′) = grν̃M (i) since

fk+1ν̃M (i′) = fk+1gkν̃M (i) = jrfrν̃M (i) = jrνM (i) = ν(i′).

Definition 2.2.3. A (B, f) structure on a manifold M is an equivalence class of compatible (Bk, fk)
structures on the normal bundles of inclusions of M under de above construction; where the equivalence
is given by agreement for sufficiently large k subject to the bijection of lemma (2.2.2).

We illustrate this definition by considering the following important examples.

Example 2.2.4.

1. Let Bk = BO(k) and fk be the identity map. Every manifold will have an unique (BO, Id)
structure, thus the class of (BO, Id) manifolds is simply the class of all manifolds. This class is
denoted by Ωun.

2. Take Bk = BSO(k) and fk the map which ignores the orientation. Every oriented manifold have
an unique (BSO, f) structure because the choice of the lifting is given by the orientation. Then
the class of (BSO, f) manifolds is the same class as the class of oriented manifolds. This class is
denoted by ΩSO.

3. Consider the fibration O(k) → EO(k)
fk−→ BO(k) where EO(k) is a contractible manifold. A

manifold M have a (B, f) structure if and only if there exists a framing of the bundle ν(i) for some
embedding i : M → Rn+k. This class of (B, f) manifolds is the same class of normally framed
manifold. This class is denoted by Ωfr.

2.3 (B, f) Cobordism

Definition 2.3.1. Let C be the category whose objects are compact manifolds together with a specified
(B, f) structure, and whose maps are the smooth, boundary preserving inclusions with trivial normal
bundle inducing compatible (B, f) structures. Let ∂ : C → C be the boundary functor, inducing (B, f)
structures by the inner trivialization. Let i : ∂ → I be the inclusion of the boundary with inner
trivialization. Then (C, ∂, i) is a cobordism category, called the cobordism category of (B, f) manifolds.
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2.3 (B, f) Cobordism

We denote by Ω(B, f) the semigroup Ω(C, ∂, i). It can be written as

Ω(B, f) =

∞⊕
n=0

Ωn(B, f),

where Ωn(B, f) denotes the subsemigroup of equivalence classes of n dimensional manifolds.

In fact, Ω(B, f) is not simply a semigroup.

Proposition 2.3.2. Ω(B, f) is an abelian group.

Proof. Take a (B, f) manifold Mn ∈ Ω(B, f), choose an embedding i : M → Rn+k with a lifting
ν̃(i) : M → Bk inducing the correct (B, f) structure on M . Let j : M × I ↪→ Rn+k+1 be the obvious
embedding. If π : M × I →M is the projection. Since fkν̃(i)π = ν(i)π = ν(j) we get a (B, f) structure
ν̃(j) : M × I → Bk given by ν̃(j) = ν̃(i)π. The induced (B, f) structure on M × 0 is the same as that on
M , so M ∼= M × 0 as (B, f) manifolds. If we let M ′ = M × 1 with the inner induced (B, f) structure, we
have that M +M ′ ∼= ∂(M × I) ≡ ∅, and thus M +M ′ ≡ ∅. Hence M has an inverse, M ′, and Ω(B, f) is
an abelian group.

Apply this construction to (B, f) manifolds. There is a map jk : BO(k) ↪→ BO(k + 1), and we see that
j∗k(γk+1) = γk ⊕ ε1, where ε1 is the trivial line bundle over BO(k). Note that T (γk ⊕ ε1) = ΣTγk.
So we have a map Tjk : ΣTγk → Tγk+1. Also we have a map g∗kf

∗
k+1γ

k+1 → f∗k+1 induced by gr. By

commutativity g∗kf
∗
k+1 = f∗k j

∗
kγ

k+1. Thus there is a map f∗k jk ∗ γk+1 → f∗k+1γ
k+1, and this yields a map

Tgk : Tf∗k jk ∗ γk+1 → Tf∗k+1γ
k+1.

Finally, using that by definition Tf∗k j
∗
kγ

k+1 = TBk+1 and the above observations, we have that

Tf∗k j
∗
kγ

k+1 = Tf∗k (γk ⊕ ε1)

= T (f∗kγ
k ⊕ f∗k ε1)

= ΣTf∗kγ
k

= ΣTBk.

So,
Tgk : ΣTBk → TBk+1.

And we obtain a new commutative diagram

ΣTBk TBk+1

ΣTBO(k) BO(k + 1)
?

ΣTfk

-Tgk

?

Tfk+1

-Tjk

Since Σ# : πn+k(TBk, t0)→ πn+k+1(ΣTBk, t0) and Tgk# : πn+k+1(ΣTBk, t0)→ πn+k+1(TBk+1, t0)
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2.4 Thom–Pontryagin Theorem

we obtain a map Tgk# ◦ Σ# : πn+k(TBk, t0)→ πn+k+1(TBk+1, t0).

This allows to define the homotopy group

lim
k→∞

πn+k(TBk, t0).

Now finally we are in condition to state and prove the Thom–Pontryagin Theorem.

2.4 Thom–Pontryagin Theorem

Theorem 2.4.1. The cobordism group of n-dimensional (B, f) manifolds Ωn(B, f) is isomorphic to the
homotopy group limk→∞ πn+k(TBk, t0).

The proof will be focused in several steps.

Let Mn be a (B, f) manifold. Let i : M ↪→ Rn+k be an embedding and ν = ν(i) : M → BO(k) the
normal bundle associated, N the total space of this bundle and π : N → M the projection. Choose a
lifting ν̃ : M → Bk giving the right (B, f) structure.

Recall N = {(x, v) ∈ M × Rn+k|v ∈ TxM
⊥} so it can be considered as a embedded submanifold of

Rn+k × Rn+k (using the embedding i), and there is an exponential map

exp : Rn+k × Rn+k → Rn+k,

given by exp(i(x), v) = i(x) + v. We have that exp|i(M)×0 = i and it is a differentiable map, so for some
ε > 0, exp|Nε is an embedding where Nε is the subset of N consisting of vectors of length less or equal to ε.

Define c0 : Rn+k → Nε/∂Nε by sending de interior of Nε to itself, and Rn+k − int(Nε) to the point
∂Nε. This map can be extended to the compactification of Rn+k by sending ∞ to ∂Nε to obtain a map
c : Sn+k → Nε/∂Nε.

Note that with ε = 1, N1/∂N1 = TN , so let ε−1 : Nε/∂Nε → TN be the multiplication by 1/ε. Consider
%ε = ε−1 ◦ c : Sn+k → TN , this map sends int(Nε) diffeomorphically to TN − t0.

Now let jkn : γk(Rn+k) → γk be the standard inclusion and n : N → γk(Rn+k) the bundle map
(x, v) 7→ (Nx, v). Then there is a map (jkn ◦ n) × (ν̃ ◦ π) : N → γk × Bk. This is injective since n
is.

If we denote by p : γk → BO(k), we have that

fr(ν̃ ◦ π(x, v)) = ν(x)

= p ◦ jkn(Nx, v)

= p(jkn ◦ n(m,x)).

So the image of this map is inside of f∗kγ
k. Thus there is a bundle map l : (jkn ◦ n)× (ν̃ ◦ π) : N → f∗kγ

k,
inducing a map T l : TN → Tf∗kγ

k = TBk.
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2.4 Thom–Pontryagin Theorem

Finally define θi,ν̃,ε(M) : (Sn+k,∞) → (TBk, t0) to be the composition T l ◦ %ε. Observe that this map
embeds int(Nε) into TBk and the rest of Sn+k into t0.

For a decreasing ε′, θi,ν̃,ε is homotopic to θi,ν̃,ε′ since Nε and N ′ε are; and for an equivalent choice of
ν̃ also will give homotopic maps by the definition of equivalence of liftings. This gives a well defined
θi(M) ∈ πn+k(TBk, t0).

Now we will prove that actually θi(M) is compatible with the structure of direct limit of lim
k→∞

πn+k(TBk, t0).

Lemma 2.4.2. Let t : Rn+k → Rn+k+1 the inclusion. Then the embedding t ◦ i : M → Rn+k+1 gives
rise to the map Tgk ◦ Σθi, that is, θti = Tgk ◦ Σθi.

Proof. Let lkn : γk(Rn+k) → γk+1(Rn+k+1), η : N → E(ν(ji)) and sn+r : Sn+k → Sn+k+1 be the
respective extensions of j. So

ν̃(ji) = gkν̃, ε
−1
ji cjisn+k = Tη ◦ ε−1c, π = πjiη, njiη = lknn

thus,

θjisn+k = T ((jk+1
n nji)× (ν̃(ji)πji))ε

−1
ji cjisn+k

= T ((jk+1
n nji)× (ν̃(ji)πji))Tη ◦ ε−1c

= T ((jk+1
n njiη)× (ν̃(ji)πjiη))ε−1c

= T ((jk+1
n lknn)× (gkν̃π))ε−1c

= T ((jknn)× (gkν̃π))ε−1c

= T (gkθi).

And therefore, θji = Tgk ◦ Σθi.

The next step is to prove that θi is independent from the choosing of the embedding.

Lemma 2.4.3. Let i′ : M + ∂W ↪→ Rn+k. If k is sufficiently large (depending only on M), θi and θi′

are homotopic.

Proof. The idea is to get a (B, f) embedding of M × I +W in Rn+k × I agreeing with i on M × 0 and
with i′ on M × 1 + ∂W , and we use this embedding to construct the homotopy. See [St, p.20].

Note that using lemma (2.4.2) to the initial embedding i we get a k sufficiently large, and then applying
lemma (2.4.3) with W = ∅, we see that θi(M) is independent of the choosing of i (as an element of
limk→∞ πn+k(TBk, t0)).

Further, suppose now that M and M ′ are cobordant, then there exist (B, f) manifolds W , W ′ with
M + ∂W ∼= M ′ + ∂W ′. Applying lemma (2.4.3)

θ(M) ∼ θ(M + ∂W ) ∼ θ(M ′ + ∂W ′) ∼ θ(M ′).

And therefore, finally we have a well defined map

Θ : Ωn(B, f)→ lim
k→∞

πn+k(TBk, t0).
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2.4 Thom–Pontryagin Theorem

Proposition 2.4.4. Θ is a group homomorphism.

Proof. Choose [M1], [M2] ∈ Ωn(B, f) and choose k and embeddings i1 : M1 → Rn+k, i2 : M2 → Rn+k

such that M1 and M2 are in different half planes. Note that Θ(M1 +M2) is given by the composition

Sn+k → Sn+k ∨ Sn+k Θ(M1)∨Θ(M2)−−−−−−−−−→ TBk.

Where the first map is collapsing the equator to a point, yielding two copies of Sn+k. However, this
composition is actually the definition of sum of the homotopy classes Θ(M1) + Θ(M2).

Proposition 2.4.5. Θ is surjective.

Proof. Choose a representative θ : (Sn+k, p)→ (TBk, t0) of a class of limk→∞ πn+k(TBk, t0). We have a
map

Tfk ◦ θ : (Sn+k, p)→ (MO(k), t0).

Since MO(k) = lims→∞ Tγk(Rk+s) and (Tfk ◦ θ)(Sn+k) is compact, exists some s such that (Tfk ◦
θ)(Sn+k) ⊆ Tγk(Rk+s). Using (1.1.16) and the fact that Grk(Rk+s) is a embedded submanifold of
Tγk(Rk+s)− t0 through the zero section. (Recall that Tγk(Rk+s)− t0 is a manifold), we deform Tfk ◦ θ
to a map hk satisfying the following:

1. hk is differentiable on the preimage of some neighborhood of Grk(Rk+s).

2. h0 is transverse regular on Grk(Rk+s).

3. Setting M = h−1
k (Grk(Rk+s)) there is some tubular neighborhood N of M such that hk|N is a

bundle map (Actually N is isomorphic to the normal bundle of M).

4. There is a closed set V containing t0 in its interior, for which Tfk ◦ θ agrees with hk on h−1
k (V ).

Since hk|M classifies the normal bundle of M , we can deform it by homotopy to a map h : (Sn+k, p) →
(MO(k), t0), satisfying the above properties and such that

h|M = ν : M → Grk(Rk+s) ↪→ BO(k),

and h is simply the usual translation of vectors in some normal tubular neighborhood of M .

Tfk : TBk →MO(k) is a fibration except in the point t0, and t0 /∈ Tfk ◦ θ(Sn+k − h−1(int(V ))), by the
covering homotopy theorem we find a homotopy

H0 : (Sn+k − h−1(int(V )))× I → TBk,

such that H0 = θ at 0 and Tfk ◦H(x, t) = h(x) for all t ∈ I. By (4), we may take H0 to be pointwise
fixed on the boundary of V . Thus H0 can be extended to a homotopy

H : (Sn+k, p)× I → (TBk, t0),

by sending h−1(V ) to the point p. Set θ1 = H|Sn+k×1.

We have that θ−1
1 (Bk) = h−1(BO(k)) = h−1(Gr(Rk+s)) = M . Actually, θ1|M gives a lift of the normal

map h|M since Tfk ◦ θ1 = h, and we chose h agree with the normal map of M . This makes a (B, f)
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2.5 Determination of ΩSO ⊗Q

structure for M .

Now consider Θ(M) with this (B, f) structure, since we chose h to be just translation around M , through
the definition of Θ(M), we can find Nε such that θ1|Nε = Θ(M)|Nε . Since TBk −Bk can be deformed to
t0 we can homotope θ1 to Θ(M). So θ ∼ θ1 ∼ Θ(M) and thus, Θ is surjective.

Proposition 2.4.6. Θ is injective.

Proof. Let M be a (B, f) manifold with Θ(M) = 0. Then there is a k such that Θ(M) : (Sn+k, p) →
(TBk, t0) is homotopic to the constant map θ0 : Sn+k → t0 by a homotopy H : Sn+k × I → TBk.

Choose H such that for some δ > 0, H|Sn+k × t = Θ(M) for t ≤ δ. As the previous proposition, by
compactness Tfk ◦H(Sn+k × I) ⊆ Tγk(Rk+s) for some s. As before, we deform Tfk ◦H to a map

K : Sn+k × I →MO(k),

which is smooth near Grk(Rk+s), transverse regular on Grk(Rk+s) and such that K = Tfk ◦ H on
Nε× [0, δ] for some d > 0. By transversality , W = H−1(Grk(Rk+s)) is a submanifold of Rn+k× I. Since
K|Sn+k×1 = Tfk ◦H|Sn+k×1 is the constant map at t0 we see that ∂W ⊆ Rk+s × 0. Since K = Tfk ◦H
on Nε × [0, δ] we see that ∂W = M .

We have only to find a (B, f) structure on W compatible with that on M . Further homotope K to get
K|M to be the normal map, and applying the covering homotopy theorem from Tfk ◦H to K, we obtain
a homotopy form H to a map

θ : Sn+k × I → TBk,

such that θ|Sn+k×t = Θ(M) for small t and θ|Sn+k×1 = θ0. Actually, θ|W is a lifting of the normal map
K|W . This gives a (B, f) structure on M which induces de correct one on M = ∂W . So M ≡ 0 in
Ωn(B, f) and thus Θ is injective

Some computations on specifically (B, f) structures are:

Corollary 2.4.7. 1. Ωun ∼= Z2[xi] where xi is a generator of degree not of the form 2k − 1.

2. ΩSO ⊗Q ∼= Q[yn] where yn is a generator of degree 4n.

3. Ωfrn
∼= limk→∞ πn+k(Sk).

2.5 Determination of ΩSO ⊗Q

Now we will determine the structure of ΩSO⊗Q, recall that tensoring with Q kills the torsion of the ring
ΩSO, and preserves the free structure. By the Thom–Pontryagin theorem, we have

ΩSOn
∼= lim
k→∞

πn+k(TBSO(k), t0).

We will use the Rational Hurewicz theorem [Kr].
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2.5 Determination of ΩSO ⊗Q

Theorem 2.5.1. Let X be a simply connected topological space with πi(X) ⊗ Q = 0 for i ≤ k. Then
the Hurewicz map

h⊗Q : πx(X)⊗Q→ Hi(X,Q),

induces an isomorphism for 1 ≤ i ≤ 2k and a surjection for i = 2k + 1.

Theorem 2.5.2. ΩSOn is finite for n not divisible by 4, and has rank p(n/4) for n divisible by 4.

Proof. By the Thom–Pontryagin theorem

ΩSOn
∼= lim
k→∞

πn+k(TBSO(k), t0).

Choose k > n, by taking the limit of the finite complexes T γ̃k(Rn+k) and using the previous theorem,
we have that

rank πn+k(TBSO(k), t0) = rank Hn+k(TBSO(k),Z).

But this is the same as the rank of Hn+k(TBSO(k), t0,Z) by the exact sequence of the pair (TBSO(k), t0).
Since the Hom(-,Z) functor preserves the free part of a group, this rank is the same as the rank of
Hn+k(TBSO(k), t0,Z). By (1.1.14)

Hn+k(TBSO(k), t0,Z) ∼= Hn(BSO(k),Z).

By Corollary (1.1.26), this last is finite for n not divisible by 4 and has rank p(n/4) for n divisible by
4.

Actually, ΩSO =
⊕∞

n=0 ΩSOn has a structure of a graded Z−algebra.

Proposition 2.5.3. ΩSO is a commutative graded Z-algebra with product induced by the Cartesian
product of manifolds.

Proof. If M,M ′, N are closed and M ≡M ′, there is a compact manifold W such that ∂W = M+(−M ′).
Then

∂(M ×N) ∼= (∂W ×N) + (−(W × ∂N)) ∼= ((M + (−M ′))×N) + (W × ∅) ∼= (M ×N) + ((−M ′)×N)

and so M × N ≡ M ′ × N . Analogously, if N ≡ N ′ then M × N ≡ M × N ′. Thus the Cartesian
product induces a well defined product on ΩSO. By the inner properties of the Cartesian product, this
induced product is also commutative, associative and distributive with respect to +. Recall that the
multiplication is graded and the identity element is the class of the manifold consisting of single point
{·}.

Theorem 2.5.4. ΩSO ⊗Q is the free Q-algebra generated by CP 2n for n ≥ 1.

Proof. By (1.1.29)
P(n)((TCP 2n)R) = 2n+ 1

Let m = 4n and I = (i1, . . . , ik) be a partition of n. Define

MI = CP 2i1 × · · · × CP 2ik

Let I ′ another partition of n, and by (1.1.28)

SI′ [p(MI)] =
∑
I1···Ik

SI1 [p(MI1)] · · ·SIk [p(MIk)]
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2.5 Determination of ΩSO ⊗Q

If I ′ does not refine 1 I, SI′ [p(MI)] must be zero since there is no way to choose the partitions I1, . . . , Ik.
Also, if I ′ = I, SI(p(MI)) = 1.

Consider the matrix indexed by the partitions of n ordered by the order I ≤ I ′ if I ′ refines I. So,
these calculations show that this matrix is triangular with 1′s on the diagonal. Therefore it has non-zero
determinant and the Pontryagin numbers of the manifolds MI are linearly independent over Q. Since
the polynomials sI are a basis for the symmetric functions of degree n, the manifolds MI are linearly
independent over Q as elements of ΩSOm , and there are exactly p(n) of them, so they form a basis for
ΩSOm .

We conclude that the set of classes of CP 2n is algebraically independent as elements of ΩSO ⊗Q. Since
(ΩSO ⊗ Q) has no torsion, by theorem (2.5.2) it is 0 if i is not divisible by 4, and has rank p(i/4) for i
divisible by 4.

These ranks are the same as (Q[CP 2n])i for all i. So,

ΩSO ⊗Q ∼= Q[CP 2n].

Corollary 2.5.5. Let M be a compact oriented 4n-manifold. If M is the boundary of an oriented (4n+1)
manifold W , then all of the Pontryagin numbers of M are zero.

Proof. There are exact sequences

H4n+1(W,M,Z)
∂−→ H4n(M,Z)

i∗−→ H4n(W,Z)

and

H4n(W,Z)
i∗−→ H4n(M,Z)

δ−→ H4n+1(W,M,Z).

Let µW,M ∈ H4n+1(W,M,Z) be the fundamental class of the pair (W,M) and µM ∈ H4n(M,Z) the
fundamental homology class of M . Then ∂µW,M = µM . Since there is an unique outward pointing
normal vector along M ⊆W , so

TW |M = TM ⊕ ε1.
Thus

p(TW |M ) = p(TM).

Therefore for any partition I of 4n,

PI [M ] = PI [TW |M ]

= 〈pI(TW |M ), µM 〉
= 〈i∗pI(TW ), µM 〉
= 〈i∗pI(TW ), ∂µW,M 〉
= 〈δi∗pI(TW ), µW,M 〉
= 〈0, µW,M 〉.

By exactness.
1I′ refines I if I′ = I1 · · · Ik where each Ij is a partition of ij
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2.6 The Hirzebruch Signature Theorem

2.6 The Hirzebruch Signature Theorem

This theorem is a special case of the Atiyah-Singer theorem, it is due to Hirzebruch and it is closely
related to the cobordism as an application.

Recall that if we have a quadratic form represented by a matrix A over Q, the signature of this form is
the number of positive eigenvalues minus the number of negative eigenvalues.

Definition 2.6.1. Let M be a compact oriented manifold of dimension n. The signature of M , σ(M), is
defined as follows: if n is not divisible by 4, then σ(M) = 0. If n is divisible by 4, say n = 4m, we define
σ(M) to be the signature of the rational quadratic of Q on H2m(M,Q) given by

Q(x) = 〈x ∪ x, µM 〉 ∈ Q,

where µM ∈ Hn(M,Q) is the fundamental rational homology class of M .

In the case n = 4m, the signature is computed by choosing a basis x1, . . . , xk of H2m(M,Q) for which
the symmetric matrix (〈xi ∪ xj , µM 〉)ij is diagonal, we subtract the number of diagonal negative entries
from the number of diagonal positive entries. This value is σ(M).

Remark. By the Poincaré duality, the computation of the signature of a 4m-dimensional manifold is
equivalent to compute the signature of the quadratic form given by the ∩ (intersection) product in the
2mth-homology.

H2m(M)⊗H2m(M) H4k(M,∂M)

H2k(M,∂M)⊗H2k(M,∂M) Z

-∪

?

∼=

?

∼=

-∩

Proposition 2.6.2. The signature satisfies the following properties.

1. σ(M +N) = σ(M) + σ(N).

2. σ(M ×N) = σ(M)σ(N).

3. If M = ∂W then σ(M) = 0.

Proof. 1. The interesting case is when both M and N have dimension 4m. Since H2m(M +N,Q) =
H2m(M,Q)⊕H2m(N,Q) we have the result.

2. Let W = M × N and m,n, p be the respective dimensions of M,N,W . If p is not divisible by 4,
then one of m or n is not zero module 4 and both sides of equality are zero.

Suppose that p = 4n, then by the Künneth theorem,

H2k(W,Q) ∼=
2k∑
s=0

Hs(M,Q)⊗H2k−s(N,Q).
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2.6 The Hirzebruch Signature Theorem

This vector space decomposes into the subspaces

Hs(M,Q)⊗H2k−s(N,Q)⊕Hm−s(M,Q)⊗H2k+s−m(N,Q)

for s < m/2.

Let {vsi } and {wtj} basis for Hs(M,Q) and Ht(N,Q) respectively, such that 〈vsi ∪ v
m−s
j , µM 〉 = δij

for s 6= m/2 and 〈wti ∪ w
n−s
j , µN 〉 = δij for t 6= n/2.

Consider the group A = H
m
2 (M,Q)⊗H n

2 (N,Q) and A = 0 in the case m,n are odd. Recall that
two elements x, y ∈ H2k(W,Q) are said to be orthogonal if 〈x∪y, µW 〉 = 0. Then A is orthogonal to
the subgroup B of H2k(W,Q) which consists of all elements of the summation given by the Künneth
theorem in which no elements of A occur. As a basis for the group B we can take {vsi ⊗ w

2k−s
j },

0 ≤ s ≤ m, s 6= n/2. Now

〈vsi ⊗ w2k−s
j )(vs

′

i′ ⊗ w2k−s′
j′ ), µW 〉 = ±1

if s+ s′ = m, i = i′, j = j′. And it is equal to 0 otherwise.

So with respect to this basis, the restriction of the bilinear form of W to B is represented by a ma-
trix with block ±

(
0 1
1 0

)
on the diagonal and zero elsewhere. Therefore the signature of the restriction

to B is 0. Since A and B are orthogonal, σ(Q) is equal to signature of the restriction of the bilinear
form to A.

Therefore σ(W ) = σ(M)σ(N) regardless if n and m are divisible by 4 or not.

3. The interesting case is when M is the boundary of a oriented 4m+ 1-manifold W . Let j : M ↪→W .
Consider the diagram of homomorphism

H2k(W,Q) H2k(M,Q) H2k+1(W,M,Q)

H2k+1(W,V,Q) H2k(M,Q) H2k(W,Q)
?

-j∗

?
i

-

?
- -j∗

The rows parts are exact homology and cohomology sequences and the vertical arrows are isomor-
phism given by the Poincaré duality. Let A2k be the image of j∗ in H2k(M,Q) and let K2k be the
kernel of j∗ in H2k(M,Q). Then A2k is the dual space of the quotient H2k(M,Q)/K2k, under the
duality between H2k(M,Q) and H2k(M,Q).

Observe that for x ∈ H2k(M,Q),
x ∈ A2k ⇔ i(x) ∈ K2k.

If b2k = dimH2k(M,Q) is the 2k − th betti number of V ,

dimA2k = dimK2k = b2k − dimK2k
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2.6 The Hirzebruch Signature Theorem

and

dimA2k =
1

2
b2k.

If x = j∗y ∈ A2k, then
〈x2, µM 〉 = 〈j∗(y2), µM 〉 = 〈y2, j∗µM 〉 = 0.

Therefore the set {x ∈ H2k(M,Q) : 〈x2, µM 〉 = 0} contains the subspace A2k of dimension 1
2b2k.

It follows that the bilinear from over M has equal number of positive and negative eigenvalues and
hence σ(M) = 0.

As an important result from these properties is the fact that if M and N are manifolds such that M ≡ N
in the oriented cobordism, then σ(M) = σ(N). So σ induces a well defined Q-algebras homomorphism

σ : ΩSO ⊗Q→ Q.

Now we construct another homomorphism. Let A = Q[t1, t2, . . .] be a graded commutative Q-algebra
where ti has degree i. Define an associated ring A to be the ring of infinite formal sums

a = a0 + a1 + · · ·

where ai ∈ A is homogeneous of degree i. Let A+ be the subgroup of A of elements with leading term 1.

Definition 2.6.3. Let K1(t1),K2(t1, t2),K3(t1, t2, t3) · · · ∈ A a sequence of polynomials where Kn is
homogeneous of degree n. For a = 1 + a1 + · · · ∈ A+ we define K(a) ∈ A+ by

K(a) = 1 +K1(a1) +K2(a1, a2) + · · ·

We say that Kn form a multiplicative sequence if K(ab) = K(a)K(b) for all a, b ∈ A+.

Example 2.6.4. A simple example is provided by the sequence

Kn(t1, . . . , tn) = λntn

for any λ ∈ Q.

A more interesting example is the following. Consider the power series expansion of the function

√
t

tanh
√
t

= 1 +
1

3
t− 1

45
t2 + · · ·+ (−1)i−1 22iBi

(2i)!
ti + · · ·

where Bi is the ith Bernoulli number. Set

λi = (−1)i−1 22iBi
(2i)!

.

For any partition I = (i1, . . . , ik) of n, set λI = λi1 · · ·λik. Now define polynomials Ln(t1, · · · , tn) ∈ A
by

Ln(t1, . . . , tn) =
∑
I

λIsI(t1, . . . , tn)

where the sum is over all partitions of n and sI is the polynomial of (1.1.27).
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2.6 The Hirzebruch Signature Theorem

Lemma 2.6.5. The set of polynomial Ln form a multiplicative sequence.

Proof. From the definition of sI we have that Ln is homogeneous of degree n. Let a, b ∈ A+, then

L(ab) =
∑
I

λIsI(ab)

=
∑
I

∑
I1I2=I

sI1(a)sI2(b)

=
∑

I1I2=I

λI1λI2sI1(a)sI2(b)

= L(a)L(b).

Note that the coefficient of tn1 in Ln is λn, since the only s−polynomial containing that monomial is s(n).

Definition 2.6.6. Let M be a manifold of dimension n. We define the L-genus of M , L(M) as follows.
If n is not divisible by 4, then L[M ] = 0. If n = 4m, then we define

L(M) = 〈Lm(p1(M), . . . , pm(M)), µM 〉.

Proposition 2.6.7. The assignation [M ] 7→ L(M) defines a Q−algebra homomorphism

L : ΩSO ⊗Q→ Q.

Proof. The additivity of the correspondence is immediate. From corollary (2.5.5), follows that the L-
genus of a boundary is zero. This two facts together guarantee that L is well defined.

Consider a product manifold W = M ×N , since the total Pontryagin class p(M ×N) = p(M) × p(N),
up to elements of order 2, we have that

L(p(W )) = L(p(M))× L(p(N)).

Therefore

L(W ) = 〈L(p(W )), µW 〉
= 〈L(p(M))× L(p(N)), µM × µN 〉
= 〈L(p(M)), µM 〉〈L(p(N)), µN 〉
= L(M)L(N).

The Hirzebruch signature theorem states that the two homomorphism constructed in this section coincide.

Theorem 2.6.8 (Hirzebruch Signature Theorem). Let M be an oriented manifold. Then σ(M) = L(M).

Proof. Since both σ and L are Q-algebra homomorphism from ΩSO ⊗Q to Q, it will suffice to show that
it is true on the set of generators of ΩSO ⊗Q, which by theorem (2.5.4) they are the complex projective
spaces CP 2n.
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2.6 The Hirzebruch Signature Theorem

Recall that H2n(CP 2n,Z) is generated by a element xn, with x ∈ H2(CP 2n,Z), then

〈xn ∪ xn, µCP 2n〉 = (−1)2k = 1.

Thus σ(CP 2n) = 1.

Now, from [MS, p.177] we have that p((TCP 2n)R) = (1 + x2)2n+1. Since the coefficient of ti1 in Li is λi,
then

L(1 + x2) = 1 + L(x2) + L2(x2, 0) + L3(x2, 0, 0) + · · ·
= 1 + λ1x

2 + λ2x
4 + · · ·

=

√
x2

tanh
√
x2

=
x

tanhx
.

Therefore,

L(p(TCP 2n)R) = L((1 + x2)2n+1)

= L(1 + x2)2n+1

=
( x

tanhx

)2n+1

.

Thus, Ln(p(TCP 2n)R) is equal the x2n term in this expansion, and L(CP 2n) is simply the coefficient of
that term.

We compute that coefficient by methods of complex analysis. The coefficient of z2n in the Taylor expansion
of (z/ tanh z)2n+1 by the Cauchy Integral Formula is

1

2πi

∮ ( z

tanh z

)2n+1 dz

z2n+1
=

1

2πi

∮
dz

(tanh z)2n+1
.

Make the substitution u = tanh z, so

dz =
du

1− u2
= (1 + u2 + u4 + · · · )du.

Thus,

1

2πi

∮
dz

(tanh z)2n+1
=

1

2πi

∮
(1 + u2 + u4 + · · · )du

u2n+1

=
1

2πi

∮
du

u

= 1.

So L(CP 2n) = 1 = σ(CP 2n).
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2.6 The Hirzebruch Signature Theorem

Example 2.6.9. In particular, the coefficient sm of pm(M) in Lm is given by

s0 = 1 and sm =
22m(22m−1 − 1)Bm

(2m)!
.

For example

σ(M4) = 〈p1(M)

3
, µM 〉

σ(M8) = 〈7p2(M)− p2
1(M)

45
, µM 〉

σ(M12) = 〈62p3(M)

945
+ · · · , µM 〉

σ(M16) = 〈127p4(M)

4725
+ · · · , µM 〉,

where the dots indicate a rational function in p1(M), . . . , pm−1(M).
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Chapter 3

Construction of Exotic Spheres

In this chapter we will construct manifolds which are homeomorphic to the sphere, but we will also show
that these manifolds are not diffeomorphism to the sphere. This kind of Manifolds are known as exotic
spheres and its existence showed that the “smooth Poincaré conjecture” does not hold. Mainly, we will
construct manifolds with an certain invariant non-zero (Signature, Arf-Kervaire) and with its boundary
homeomorphic (or just homotopic by Poincaré’s Conjecture) to a sphere. In suitable dimensions this fact
will guarantee that these boundaries are exotic spheres.

3.1 S3-bundles over S4

The idea is to construct spherical bundles Sn−1 →M → Sn, and by the long exact sequence in homotopy
associated to this fibration, we get that M is a (2n− 2)-connected manifold, and one can guarantee that
this manifold is indeed homeomorphic to the sphere S2n−1. This was the first example of an exotic
structure over the spheres and it is due to J. Milnor [M1].

We start with some examples where the manifold M is actually the S2n−1 sphere as we know it.

Example 3.1.1. 1. The trivial case is to consider the fibration S0 → S1 π−→ S1 given by π(z) = z2.

2. A more interesting example is the following. Describe S3 as {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} and
consider the map

h1 : S3 → C ∪∞

(z1, z2) 7→ z1z
−1
2

and compose it with the inverse of the stereographic map to obtain a map π : S3 → S2. It is not
difficult to see that π(z1, z2) = π(eiθz1, e

iθz2) and thus we get a fibration

S1 → S3 → S2

3. Recall that H denotes the quaternions and its elements are described by the form q = a1 + a2i +
a3j + a4k with ai ∈ R. Also can be described by q = c1 + c2j where c1, c2 ∈ C.
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3.1 S3-bundles over S4

Consider S7 = {(a, b, c, d) ∈ C4 : |a|2 + |b|2 + |c|2 + |d|2 = 1}, and let q1 = a + bj and q2 = c + dj.
As in the previous example, consider the map

h : S7 → C2 ∪ {∞}

given by h1(q1, q2) = q1q
−1
2 and compose it with the inverse stereographic projection to get a

fibration
S3 → S7 → S4.

If the base space of any fibration will be the sphere Sn, there is an easy way to construct many different
fiber bundles, where the typical fiber will be a topological space F . Let G denote the group of homeo-
morphism of F and let f : Sn−1 → G.

We can construct the total space

Ef = (U0 × F ) t (U1 × F )/ ∼

where (u, y) ∼ (u, f◦π(u)y) is an equivalence relation and U0 = Sn−{north pole}, U1 = Sn−{south pole}
and π : U0 ∩ U1 → Sn−1 is the projection onto the equator. Observe that if f is smooth, we can equip
Ef with a smooth structure.
The following theorem identifies all equivalence classes of fiber bundles over a sphere.

Theorem 3.1.2. For a fixed fiber F , all F -bundles over Sn are isomorphic to one obtained by the
previous construction, and two such bundles are isomorphic if and only if the defining maps Sn−1 → G
are homotopic, where G denotes the group of homeomorphism of F .

As an immediate corollary, we get that the F -bundles over Sn are classified by the group πn−1(G).

Now we will focus on the case B = S4, F = S3 and G = SO(4). So we can classify such bundles by
π3(SO(4)).

Proposition 3.1.3. There is an isomorphism between the groups π3(SO(4)) and Z⊕ Z.

Proof. We consider S3 as the unit sphere in the space of quaternions H. Define the map

SO(4)→ S3 × SO(3)

given by φ 7→ (φ(1), φ(1)−1φ), it is well defined since φ preserves the norm. Here we set SO(3) as the
subgroup of SO(4) which fixes 1, and so φ(1)−1φ ∈ SO(3). We can construct an inverse

S3 × SO(3)→ SO(4)

by setting (u, ψ) 7→ φu,ψ and φu,ψ(v) = uψ(v).

So, there is a homeomorphism between SO(4) and S3×SO(3). Recall that SO(3) ∼= RP 3 and there exist

a 2-sheeted covering S3 ρ−→ RP 3 , getting a fibration

Z2 → S3 → RP 3,

thus Z ∼= π3(S3) ∼= π3(RP 3). Combining this result with the last homeomorphism we get then

π3(SO(4)) ∼= π3(S3)⊕ π3(SO(3)) ∼= Z⊕ Z.
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We can describe explicitly all the equivalence classes of S3-bundles over S4 (with respect to the structural
group SO(4)).

The elements of π3(S3) can be represented by maps φa : S3 → S3, a ∈ Z, which are of the form φa(z) = za.

Since ρ is a finite cover, and actually an isomorphism on π3, the elements of π3(SO(3)) can be represented
by ρ ◦ φb : S3 → SO(3), b ∈ Z.

Therefore, for every (a, b) ∈ Z⊕ Z, we have a map

S3 → S3 × SO(3) → SO(4)

z 7→ (za, ρ(zb)) 7→ (v 7→ za+bvz−b).

So we have proved

Proposition 3.1.4. The map

Z⊕ Z→ π3(SO(4))

(h, j) 7→ φhj

where φhj(z)(v) = zhvzj is a group isomorphism.

Denote by ξhj the S3-bundle associated to the map φhj and let Ehj the total space of this bundle. Also,
we can consider a D4-bundle associated to this map, as before, we consider the total space

Bhj = (D4 × S) ∪ (D4 × S)/ ∼

where (t, x) ∼ (t, φhj(t)(x)) if ||t|| = 1. And so, the boundary of this bundle is a S3-bundle and ∂Bhj =
Ehj

Example 3.1.5. 1. B00
∼= D4 × S4 and E00

∼= S3 × S4 since in the equator of S4, φ00 = id.

2. B10
∼= HP − open disc and E10

∼= S7.

Recall that HPn is the quotient of Hn+1 − {0} under the identification (u, v, w) ∼ (xu, xb, xw) for
x ∈ H∗. There is a natural injection of HP 1 ↪→ HP 2 and there is also a natural fibration

H→ HP 2 − {[0, 0, 1]} π−→ HP 1

given by π−1([u, v]) = {[u, v, w] : w ∈ H}.

Notice that HP 1 may be decomposed into two 4-disc

D1 = {[u, 1] : ||u|| ≤ 1}

D2 = {[1, v] : ||v|| ≤ 1},
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3.1 S3-bundles over S4

sewn together through the reflection map [u, 1] 7→ [1, u−1]. So the fibration is an H (or R4)-bundle
over S4.

The local trivialization over D1 and D2 are given by

φ1 : D1 ×H→ π−1(D1), φ([u, 1], w) = [u, 1, w]

φ2 : D2 ×H→ π−1(D2), φ([1, v], w) = [1, v, w].

The transition map acts over the set where [u, 1] = [1, v], that is, the equatorial S3 and we have

φ−1
2 φ1([u, 1], w) = φ−1

2 ([u, 1, w]) = φ−1
2 ([1, u−1, u−1w]) = ([1, v], vw)

and so φ−1
2 φ1 is equal to φ10.

From the total space HP 2 − {[0, 0, 1]} we remove the open 8-disc {[u, v, 1] : ||u||2 + ||v||2 < 1}
centered at [0, 0, 1]. So we restrict the fiber over [u, v] to the set {[u, v, w] : ||w||2 ≤ ||u||2 + ||v||2}
and so this fiber is homeomorphic to D4 for [u, v] fixed.

Therefore, B10
∼= HP 2 \ open 8-disc. Moreover,E10

∼= ∂B10
∼= S7 the boundary of the removed disc

We are almost done in the construction of exotic spheres, we use the total spaces of these S3-bundles
for special choosing of h, j and the Morse theory and characteristic classes will guarantee that these
manifolds will be homeomorphic but not diffeomorphic to the sphere S7 respectively.

Proposition 3.1.6. There is a group homomorphism between πm−1(SO(n)) and πm(Grn(R2n)).

Proof. Given f, g : Sm−1 → SO(n), a representative of the sum in πm−1(SO(n)) is given by (f ∨ g) ◦ p
where p : Sm−1 → Sm−1 ∨ Sm−1 is the pinching map.

Let Ff denotes the map Sm → Grn(R2n) which classifies the n-plane bundle over Sm, induced by f .

We have the diagram

Sm−1 Sm−1 ∨ Sm−1 SO(n)

Sm Sm ∨ Sm Grn(R2n)
?

-p

?

-f∨g

-p -Ff∨Fg

The lower row represents the sum [Ff ] + [Fg] in πm(Grn(R2n)). Since F (f ∨ g) = Ff ∨ Fg, it also
represents F ([f ] + [g]).

Now we can compute the Euler and Pontryagin classes of the bundles Ehj
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Theorem 3.1.7. The Euler and Pontryagin classes of Ehj are given by

e(Ehj) = ±(h+ j)ι

p1(Ehj) = ±2(h− j)ι
where ι ∈ H4(S4,Z) is the generator.

Proof. Notice that p1(Ehj) and e(Ehj) are linear in h and j. This is because the map which assigns to
(h, j) the class p1(Ehj), e(Ehj) ∈ H4(S4,Z) are the composition of the group homomorphisms.

Z2 ∼=−→ π3(SO(4))→ π4(Gr4(R8))→ H4(S4,Z)

where the last map are given by [f ] 7→ p1(f∗(γ4(R8))) and [f ] 7→ e(f∗(γ4(R8))) according to the case.

Consider the effect of reversing the fiber orientation. Interpreting S3 as the unit quaternions, this is

equivalent to conjugation by the map v
g7−→ v−1, then

g−1(φhj)g(v) = (uhv−1uj)−1 = u−jvu−h

and so Ehj becomes E−j−h. But reversing orientation is detected by e and not by p1, and thus
e(Ehj) = −e(E−j−h) and p1(Ehj) = p1(E−j−h).

So using linearity we have that
e(Ehj) = k1(h+ j)ι

p1(Ehj) = k2(h− j)ι,
for some yet undetermined constants.

Apply the Gysin sequence to the bundle E10, yielding an exact sequence

H3(E10,Z)→ H0(S4,Z)
∪e(E10)−−−−−→ H4(S4,Z)→ H4(E10,Z).

We already know that E10
∼= S7 and so the first and last groups above are zero. Thus e(E10) must be a

generator and so k1 = ±1.

Now we calculate k2. Here we use the computations of p1(S4) = 0 and p1(HP 2) = 2β (see [MS]). Recall
that B10 = HP 2 − D8, and so the map i : B10 ↪→ HP 2 induces an isomorphism i∗ : H4(HP 2,Z) →
H4(B10,Z) by the exact sequence and excision applied to the pair (HP 2, B10). Similarly, the projection

B10
π−→ S4 induces an isomorphism in the cohomology H4.

Let α denote the generator ofH4(B10,Z) and β the generator ofH4(HP 2,Z). Consider the tangent bundle
TB10 which is naturally isomorphic to the Whitney sum of the sub-bundle of those vectors parallel to
the fiber, and those parallel to the 0−section. That is, we have an isomorphism

TB10
∼= π∗E10 ⊕ π∗TS4.

So,

p1(TB10) = π∗(p1(E10 ⊕ TS4))

= π∗(p1(E10) + p1(TS4))

= π∗(p1(E10)) + 0.
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Since π∗ and i∗ are isomorphism in H4

p1(E10) = (π∗)−1(p1(TB10))

= (π∗)−1(i∗(p1(HP 2)))

= (π∗)−1(i∗(2β))

= (π∗)−1(±2α)

= ±2ι.

And thus k2 = ±2.

Now we restrict to a special choosing of h and j. Set Mk the total space Ehj with h+j = 1 and h−j = k,
the first condition will imply that Mk is homeomorphic to S7 and the second one will show that Mk is
not diffeomorphic to this sphere.

Theorem 3.1.8. Mk is homeomorphic to S7.

Proof. Since by construction Mk is a 7-dimensional compact manifold, we show that this manifold is
homeomorphic to S7 constructing a Morse function over Mk with exactly two critical points.1

Recall that Mk has two charts U1 = (S4 − {N} × S3) ∼= R4 × S3 and U2 = (S4 − {S} × S3) ∼= R4 × S3.
The transition function over U1 ∩ U2

∼= R4 − {0} × S3 are then

U1 ∩ U2 → U1 ∩ U2

(u, v) 7→ (
u

||u||2
, φhj

( u

||u||

)
(v)).

Consider the map defined over the first chart

g(u, v) =
Re(v)√
1 + ||u||2

(u, v) ∈ U1.

And in the second chart define

g(u′, v′) =
Re(u′v′−1)√
1 + ||u′v′−1||

(u′, v′) ∈ U2.

Actually, g is well defined over the whole Mk, only we have to prove that g(u, v) = g(u′, v′) under the
change of coordinates (u, v) 7→ (u′, v) given by the transition map defined in U1 ∩ U2.

1Theorem: Let M be a n-dimensional compact manifold. If there exist a Morse function f : M → R with only two
critical points, then there exists a homeomorphism of M onto Sn which is a diffeomorphism except possibly at one point.
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3.1 S3-bundles over S4

Since h+ j = 1 and for q ∈ Q Re(q) = Re(q−1), we have

Re(u′v′−1) = Re
( u

||u||2
φhj
( u

||u||
(v)
))

= Re
( u

||u||2
[(

u

||u||
)hv(

u

||u||
)j ]−1

)
= Re

( 1

||u||
(
u

||u||
)1−(h+j)v−1

)
= Re

( v−1

||u||

)
=

1

||u||
Re(v−1)

=
1

||u||
Re(v)

On the other hand

1 + ||u′v′−1||2 = 1 + || u

||u||2
(
u

||u||
)−jv−1(

u

||u||
)−h||2 = 1 +

1

||u||2
.

And this together with the previous equality,

g(u′, v′) =
Re(u′v′−1)√
1 + ||u′v′−1||2

=
||u||Re(u′v′−1)√

1 + ||u||2
=

Re(v)√
1 + ||u||2

= g(u, v).

Let us determine the critical points of f . Choose coordinates u = (x1, x2, x3, x4) and v = (y1, y2, y3, y4)
with ||v|| = 1, then

g(u, v) =
(1− (y2)2 − (y3)2 − (y4)2)1/2

(1 + (x1)2 + (x2)2 + (x3)2 + (x4)2)1/2
.

We find by calculation

∂g

∂yi
=

−yi

(1− (y2)2 − (y3)2 − (y4)2)(1 + (x1)2 + (x2)2 + (x3)2 + (x4)2)1/2

∂g

∂xi
=

(1− (y2)2 − (y3)2 − (y4)2)1/2

(1 + (x1)2 + (x2)2 + (x3)2 + (x4)2)3/2

and thus dg = 0 if and only if yi = 0, i = 2, 3, 4, xi = 0, i = 1, 2, 3, 4 yielding the critical points
(u, v) = (0,±1). In the other chart can be verified that dg never vanishes and so we get no critical points
there.

By explicit calculation we find that

∂2g

(yi)2
|(0,±1) =

∂2g

∂yj∂yi
|(0,±1) =

∂2g

∂xj∂yi
|(0,±1) =

∂2g

∂xj∂xi
|(0,±1) = 0

∂2g

(xi)2
|(0,±1) = 1.

That is, the critical points are non-degenerated and so g is a Morse function with only two critical points,
thus Mk is indeed homeomorphic to the sphere S7.
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3.1 S3-bundles over S4

We define an invariant under cobordism λ which will guarantee that Mk is in general non diffeomorphic
to the sphere S7.

Definition 3.1.9. LetM be a oriented 7-dimensional smooth manifold such thatH3(M,Z) = H4(M,Z) =
0 and suppose that exists an oriented manifold B such that ∂B = M . Choose ν ∈ H8(B,M,Z) and
µ ∈ H7(M,Z) orientations with ν|M = µ. Since i∗H4(B,M,Z)→ H4(B,Z) is an isomorphism, consider
the cohomology element (i∗)−1(p1(B)) ∈ H4(B,M).
Define

q(B) = 〈(i∗)−1(p1(B))2, ν〉

and
λ(M) = 2q(B)− σ(B) mod 7.

Notice that for the case M = S7, we choose B = D8 and so λ(M) = 0 since H4(D8) = 0.

Proposition 3.1.10. λ(M) does not depend of the choice of the manifold B

Proof. Let B1, B2 be manifolds such that ∂B1 = ∂B2 = M and let ν1, ν2 be the respective orientations
which induces the correct orientation over M . We glue these manifolds through M to obtain a manifold
C without boundary.

Let ν orientation on C that induces the orientation ν1 on B1 and −ν2 on B2. By the Hirzebruch signature
theorem

σ(C) = 〈7p2(C)− p1(C)2

45
, ν〉

and by bilinearity
45σ(C) + 〈p1(C)2, ν〉 = 7〈p2(C), ν〉 ≡ 0(mod 7),

or equivalently
2〈p1(C)2, ν〉 − σ(C) ≡ 0(mod 7).

Consider the following diagram in which the isomorphism in the columns derived from the exact coho-
mology sequences and the isomorphism in the bottom row from the Mayer-Vietoris sequence

H4(B1,M,Z)⊕H4(B2,M,Z) H4(C,M,Z)

H4(B1,Z)⊕H4(B2,Z) H4(C,Z)

?

i∗1⊕i
∗
2

?

j∗

�h

� k

So h is an isomorphism. For α ∈ H4(C,Z) there exists (α1, α2) ∈ H4(B,M,Z)⊕H4(B2,M,Z) such that
j∗h−1(α1, α2) = α. Then

〈α2, ν〉 = 〈j∗h−1(α1, α2)2, ν〉 = 〈h−1(α1, α2)2, j∗ν〉 = 〈α2
1, ν1〉 − 〈α2

2, ν2〉.

That is, the quadratic form of C is the direct sum of the form of B1 and minus the form of B2, thus their
respective signatures satisfy

σ(C) = σ(B1)− σ(B2)
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3.2 Plumbing of Disk Bundles

Now in this process take α = (i∗1)−1(p1(B1)) and β = (i∗2)−1(p1(B2)). By naturality of the Pontryagin
class, k∗(p1(C)) = p1(B1)⊕ p1(B2), so

j∗h−1(p1(B1)⊕ p1(B2)) = p1(C).

Which implies that
〈p1(C)2, ν〉 = 〈α2, ν1〉 − 〈β2, ν2〉

or equivalently
q(C) = q(B1)− q(B2).

Summarizing
(2q(B1)− σ(B1))− (2q(B2)− σ(B2)) = 2q(C)− σ(C) ≡ 0(mod 7).

Now we can use λ to distinguish between some of the Mk and S7. To that, we have this final result.

Theorem 3.1.11. λ(Mk) ≡ k2 − 1 mod 7.

Proof. Consider the bundle D4 → Bk → S4, we have an isomorphism H∗(Bk,Z) ∼= H∗(S4,Z), so
H4(Bk,Z) is cyclic and σ(Bk) must be equal to ±1. Let ν an orientation over Bk such that σ(Bk) = 1.
Exactly as in the proof of theorem (3.1.7), there is a bundle isomorphism TBk ∼= π∗(Mk ⊕ TS4). Thus

p1(Bk) = π∗(±2kι+ 0) = ±2kπ∗ι.

Therefore

λ(Mk) = 2q(Bk)− σ(Bk) = 2〈±(2kπ∗ι)2, ν〉 − 1 = 2〈4k2π∗ι2, ν〉 − 1 = 8k2 − 1 ≡ k2 − 1(mod 7).

Since λ(M3) = 1, λ(M5) = 3 and λ(M7) = 6.

Corollary 3.1.12. The manifolds M3, M5 and M7 are exotic spheres.

3.2 Plumbing of Disk Bundles

In this section, we will construct a manifold W 4n, with boundary a homotopy sphere, which will have
the following intersection matrix:

A =



2 1 0 0 0 0 0 0
1 2 1 0 −1 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 −1 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2


.

This matrix satisfies det(A) = 1 and σ(A) = 8.

Recall that the oriented n-plane bundles over a sphere of dimension k are classified by the group
πk(SO(k)), and from each n-plane bundle we can obtain a n-disk bundle over Sk.
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3.2 Plumbing of Disk Bundles

Definition 3.2.1. The plumbing of two disk bundles are made following this steps:

1. Suppose that we have two such disk bundles

α : Dt → Eα → Sr

β : Dr → Eβ → St

2. Choose open sets Ur ⊆ Sr and Ut ⊆ St, by trivial locality condition, there are diffeomorphism

α|Ur ∼= Dr ×Dt

β|Ut ∼= Dt ×Dr

3. Now use this diffeomorphism to make an identification between the fibre disk of α, Dt
α, with the

base disk of β, Dt
β . (And viceversa)

This manifold is said to be the result of plumbing α and β.

Choose diffeomorphism
θ1 : Dr

α → Dr
β θ2 : Dr

α → Dr
β .

The diffeomorphism θ1 and θ2 can be chosen to either both preserve or reverse orientation. We say we
plumb with sign +1 if both θ1 and θ2 are orientation preserving, and sign −1 if both are orientation
reversing. Note that the result of plumbing two disk bundles is oriented compatible with the given ori-
entation, regardless of sign, if at least one of r or t is even.

Remark. We can represent the plumbing by a diagram in the following way. For each bundle, draw a
dot, and label them with the corresponding element in πk(SO(n)). Each time we plumb two of these
bundles together, join the appropriate dots with a line. Label this line with the sign of plumbing.

Restrict now to use only stably-trivial bundles with the dimension of the base space equals to the fiber
dimension(a even integer). Associate to the graph a symmetric matrix A over Z with even entries on the
diagonal.

Begin with n bundles over the k-sphere and arrange these in some order. Suppose that the ith bundle is
represented by λiτ ∈ πk(BSO(k)) where τ ∈ πk(BSO(k)) represents the tangent bundle of Sk. Suppose
that the plumbing between any two bundles have the same sing. Let aii = 2λi. For i 6= j let

Mij =

{
p if the bundles i and j are plumbed together p times with sign +1

−p if the bundles i and j are plumbed together p times with sign −1

Proposition 3.2.2. The matrix A defines a quadratic form on the free n-dimensional Z-module V . This
quadratic form is the same intersection form of the manifold by plumbing the original graph.

Conversely, given any even quadratic form q on V , we can obtain a graph in the obvious way, and thus,
a manifold M with intersection form equal to this quadratic form.
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3.3 Algebraic Varieties With Singularities

Construction of the manifold

Let k = 2n, and choose a ordered basis (indexed by I) of the free Z-module, which has intersection matrix
A given at the beginning of this section. For each i ∈ I, set a sphere Si = S2n and take the disk bundle
D(TSi)→ Si.
Let W be the 4n-manifold resulting by plumbing the above bundles with respect to the matrix A. Ob-
serve that by construction, W is stably parallelizable. The construction of W is equivalent to make a
plumbing along the graph

Where each vertex represents the tangent bundle of S2n.

Lemma 3.2.3. The manifold W is (2n− 1)-connected and ∂W is (2n− 2)-connected.

Proof. See [Bw2, p.117]

Theorem 3.2.4. ∂W is a homotopy sphere.

Proof. By the Poincaré-Lefschetz duality, Hi(W,∂W,Z) ∼= H2k−i(W,Z), soHi(W,∂W,Z) ∼=Hom(H2k−1(W,Z),Z).
Thus, intersection matrix determines the natural homomorphism

Hi(W,Z)→ Hi(W,∂W,Z) ∼= Hom(H2k−i(W ),Z)

Recall that H0(W ) ∼= Z and Hi(W ) = 0 for i 6= 0, 2k. Consider the exact sequence associated to the pair
(W,∂W ).

0→ Hk(∂W )
i∗−→ Hk(W )

j∗−→ Hk(W,∂W )
∂−→ Hk−1(∂W )

The map Hk(W ) → Hk(W,∂W ) is given by the intersection matrix A, thus it is an isomorphism and
hence Hk(∂W ) = Hk−1(∂W ) = 0. So ∂W is a homotopy sphere.

All the results in this section converge to:

Corollary 3.2.5. ∂W is a (4n− 1)-dimensional exotic sphere.

3.3 Algebraic Varieties With Singularities

We start recalling some results about the topology of joins. For all the details see [M2].

Definition 3.3.1. Let A1, · · · , An be topological spaces. We define the join of this spaces as the set
A = A1 ∗ · · · ∗An consisting by elements of the form

t1a1 ⊕ · · · ⊕ tnan

where t1, . . . , tn ∈ R, ti ≥ 0, t1 + · · ·+ tn = 1, and ai ∈ Ai.

We consider A with the strongest topology such that the functions ti : A→ [0, 1], ai : t−1
i (0, 1]→ Ai are

continuous.
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3.3 Algebraic Varieties With Singularities

Theorem 3.3.2. Let A,B, be topological spaces. We have

H̃k+1(A ∗B,Z) ∼=
∑
i+j=k

H̃i(A,Z)⊗ H̃j(B,Z) +
∑

i+j=k−1

Tor(H̃i(A,Z), H̃i(B,Z)).

Moreover, if B is arcwise connected and A is non vacuous, then A ∗B is simply connected.

From the Hurewicz theorem it follows that

Corollary 3.3.3. The join of (n+ 1) topological spaces is (n− 1)-connected.

Now we can construct exotic spheres by considering complex algebraic varieties.
For a sequence of integers a = (a1, . . . , an) with ai ≥ 2, let f(z1, . . . , zn) = za11 + · · · zann be a complex
polynomial. Denote by V (f) the set of zeros of f and put Σ(a) = V (f) ∩ S2n−1. Define Ξ(t) = f−1(t)
and Va = Ξ(1).

Remark. Since the derivative of f at a point z ∈ Cn is Df(z) = (a1z
a1−1
1 , . . . , anz

an−1
n ), the only critical

point is 0 and therefore the variety V (f) is an hypersurface with an isolated singularity at 0.

The set Σ(a) is a smooth manifold of dimension 2n−3, since it is embedded as a codimension 2 submanifold
of S2n−1.

Let Gaj be the multiplicative cyclic group of order aj and wj its respective generator, consider the group

Ga = Ga1 × · · · × Gan . If we identify each Gaj with the group generated by ξj = e
2πi
aj the athj root of

unity. Ga acts over Va by the action (wk11 , . . . , wknn ) · (z1, . . . , zn) = (ξk11 z1, . . . , ξ
kn
n zn).

Lemma 3.3.4. Let Ua = {z ∈ Va : z
aj
j is a non negative real number}. Then Ua is a deformation retract

of Va.

Proof. Consider the complex hyperplanes X = {(z1, . . . , zn) ∈ Cn : σzi = 1} and Si = {z ∈ X : zi =
0}. Then, there is a retract of the system of hyperplanes (X,S1, . . . , Sn) over the simplicial system
(∆n−1, ∂1∆n−1, . . . , ∂n∆n−1), illustrated by the figure 3.1

Figure 3.1: Deformation retract of the simplicial system (∆3, ∂1∆3, ∂2∆3, ∂3∆3)

Using the change of variables ξi = z
1/ai
i , we have the retraction of Va over Ua.

Note that a element z ∈ Ua can be identified with elements of the form zj = uj |zj | with uj ∈ Gaj . Setting
tj = |zj |aj , then Ua becomes the space of n-tuples

t1u1 ⊕ · · · ⊕ tnun
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3.3 Algebraic Varieties With Singularities

with uj ∈ Gaj , tj ≥ 0,
∑n
j=0 tj = 1.

Thus Ua can be identified with the join Ga1 ∗ · · · ∗Gan of the finite sets Gaj .
Therefore, from theorem (3.3.2), we get

Proposition 3.3.5. Va ⊆ Cn is (n− 2)-connected, and

H̃n−1(Va,Z) ∼= H̃0(Ga1 ,Z)⊗ · · · ⊗ H̃0(Gan ,Z).

This is a free abelian group of rank r =
∏

(aj − 1). The other reduced homology groups are zero.

Ua is an (n − 1)-dimensional simplicial complex which has an (n − 1)-simplex for each element of Ga.
The (n−1)-simplex associated to the unit of Ga is denoted by e. All other (n−1)-simplices are obtained
from e by operations of Ga. Thus we have for the (n− 1)-dimensional simplicial chain group

Cn−1(Ua,Z) = Jae

where Ja is the group ring of Ga. The homology group H̃n−1(Ua) = H̃n−1(Va) is an additive subgroup
of Jae = Cn−1(Ua) ∼= Ja.

The face operator ∂j satisfies ∂j = wj∂j , therefore

h = (1− w1) · · · (1− wn)e

is a cycle. Thus h ∈ H̃n−1(Ua,Z). It follows that H̃n−1(Va,Z) = Jah.

Theorem 3.3.6. The map w 7→ wh induces an isomorphism Ja/Ia ∼= H̃n(Va,Z) = Jah. Where Ia ⊆ Ja
is the annihilator ideal of h which is generated by the elements

1 + wj + w2
j + · · ·+ w

aj−1
j

(j = 0, . . . , n). Therefore wk11 · · ·wknn h is a basis of H̃n−1(Va,Z).

Now we can compute the cohomology of Σ(a) to show that it is homeomorphic to the sphere.
The manifold Y = Cn − V (f) is a deformation retract of S2n−1 − Σ(a). The polynomial f induces a
fibration1

Va → Y
f−→ C∗.

By the long exact sequence of homotopy associated to this fibration we get π1(Y ) ∼= Z, πn−1(Y ) = Ja/Ia.
Computing the homology of Y associated to the spectral sequence of this fibration with E2-term, the
homology with local coefficients

E2
p,q = Hq(C

∗, Hq(Va,Z)).

For each t = e2πiθ ∈ S1 who describes a circle, there exist an isotopy fθ : Ξ(1) → ξ(t) defined by

fθ(ξi) = e
2πiθ
aj ξi. Particularly, if t = 1, we obtain the automorphism w = w1 · · ·wn.

So from [DK] we get that E∞p,q = E2
p,q, and the only no trivial groups are E2

0,0
∼= E2

1,0
∼= Z and

E2
0,n−1

∼= coker(1− w)

1It is known as the Milnor fibration theorem
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3.3 Algebraic Varieties With Singularities

E2
1,n−1

∼= ker(1− w).

It follows that Hi(Y,Z) = 0 for i 6= 0, 1, n − 1, n. In the case i = n − 1, Hi(Y,Z) = 0 if and only if
1− w : Ja/Ia → Ja/Ia is an isomorphism, that is equivalent to the condition that

det(1− w) = ±1.

Lemma 3.3.7. Define ∆a(t) = det(t · 1− w). Then

∆a(t) =
∏

0<ik<ak

(t− ξi11 · · · ξinn ).

Proof. Consider Ja/Ia as the Tensor product
⊗n

k=1 Vk where Vk is the Z-module spanned by {wik}. Thus
w : Ja/Ia → Ja/Ia can be seen as the map w1⊗· · ·⊗wn where wk : Vk → Vk is the multiplication by wk.

Tensoring everything with C, we find that for each athk root of unity, xk = ξikk the vector 1 + xkwk +
· · ·+ (xkwk)ak−1 is an eigenvector of wk with eigenvalue x−1

k . Therefore the eigenvalues of w are all the
numbers x−1

1 · · ·x−1
n . So

∆a(t) =
∏

0<ik<ak

(t− ξi11 · · · ξinn ).

In particular, ∆a(1) has positive real part. So we have the following result.

Theorem 3.3.8. Σ(a) is a homology sphere of dimension (2n− 3) for n ≥ 4 if and only if ∆(1) = 1.

Proof. Notice that Σ(a) is a deformation retract of V (f)− {0}. Consider the 2−codimensional manifold
X = {z ∈ V (f) : zn = 0}. There is a surjection π1(V (f) − Xa) → π1(V (f) − {0}) and a fibration
Vã → V (f)−Xa → C∗, where ã = (a1, . . . , an−1). Thus π1(V (f)−Xa) and so π1(V (f)−{0}) is abelian.

Therefore, from the Alexander Duality:1

π1(Σ(a)) ∼= H1(Σa,Z) ∼= H2n−3(S2n−1 − Σ(a),Z) ∼= H2n−3(Y,Z) = 0.

And using the Hurewicz theorem for i ≤ n− 3

πi(Σ(a)) ∼= Hi(Σa,Z) ∼= H2n−2−i(S2n−1 − Σ(a),Z) ∼= H2n−2−i(Y,Z) = 0.

In the case of i = n− 2, n− 1, we use the Alexander duality and that Hn−1(Y,Z) = Hn(Y,Z) = 0 if and
only if ∆a(1) = 1 (Observe that we avoid the case ∆a(1) = −1 using lemma (3.3.7)).

So, by the h-Cobordism Theorem, we get that actually Σ(a) is homeomorphic to S2n−3. In the following
results we will compute the signature of this manifold, and in general, this manifold is not diffeomorphic
to the sphere.

Recall that Va is a (2n− 2)-dimensional oriented manifold without boundary, therefore there is a bilinear
intersection form well defined over Hn−1(Va,Z).

1Alexander Duality: Let X ⊆ Sn be a compact and locally contractile space. Define Y = Sn −X. Then there is an
isomorphism Hq(Y,Z) ∼= Hn−q−1(X,Z)
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3.3 Algebraic Varieties With Singularities

Theorem 3.3.9. The signature of Va, is given by

σ(Va) =
∑

0<jk<ak

(−1)[j1/a1+···+jn/an],

where j = (j1, . . . , jn) is a n−tuple of integers such that jk < ak and n ≥ 5 odd.

Proof. Let n odd. As a basis of Hn−1(Va,Z) = Ja/Ia⊗C use the eigenvectors introduced in the proof of
lemma (3.3.7), namely

vj =

n∏
k=1

(1 + xkwk + · · ·+ (xkwk)ak−1),

where xk = e2πijk/ak and j = (j1, · · · , jn) is an n−tuple of integers with 0 < jk < ak.
By explicit calculation of the intersection numbers, we get

〈vj , vi〉 = (−1)(n−1)(n−2)/2(1− x1 · · ·xn)

n∏
k=1

(1− x−1
k )(1 + xkyk + · · ·+ (xkyk)ak−1). (3.1)

This is 0 unless ik + jk = ak for all k. Therefore the vectors vj + va−j and i(vj − va−j) form a basis of
Ja/Ia ⊗ C, with respect to which the intersection matrix is diagonal.
These entries are given by

〈vj + va−j , vj + va−j〉 = 〈i(vj − va−j), i(vj − va−j)〉 = 2〈vj , va−j〉

which are real numbers. Using formula (1) we get then

〈vj , va−j〉 = (−1)(n−1)/2(1− x1 · · ·xn)
∏
k

(1− x−1
k )ak

= (−1)(n−1)/2(
∏
k

ak)(
∏
k

(1− x−1
k ) +

∏
k

(1− xk))

= 2Re(−1)(n−1)/2(
∏
k

ak)(
∏
k

1− x−1
k )

= 2Re(−1)(n−1)/2(
∏
k

ak)(−2ieπijk/ak sin(π
jk
ak

))

=
(∏
k

4ak sin(π
jk
ak

)
)

Re(−eπi(
1
2 +

∑
k

jk
ak

)
).

Since sin(π jkak ) > 0 because 0 < jk < ak, then the above expression is positive exactly when

Re(−eπi(
1
2 +

∑
k

jk
ak

)
) < 0,

or equivalently,

2l <
∑
k

jk
ak

< 1 + 2l.

Thus, the signature of Va is equal to τ+ − τ− where τ± is the number of n-tuples j = (j1, . . . , jk) such
that 0 < jk < ak and

∑n
k=1

jk
ak

mod 2 lies between 0 and ±1. This means that

σ(Va) =
∑

0<jk<ak

(−1)[j1/a1+···+jn/an].
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3.3 Algebraic Varieties With Singularities

A careful computation gives:

Corollary 3.3.10. For a = (a1, . . . , an) = (3, 6k − 1, 2, . . . , 2) with n odd and k any integer.

σ(Va) = (−1)(n+1)/28k.

Define Ma(ε) = Ξ(ε)∩D2n and Σa(ε) = Ξ(ε)∩ S2n−1 for ε > 0 small. So Σ(a) is diffeomorphic to Σa(ε)
and it is the boundary of Ma(ε). The interior of Ma is diffeomorphic to Ξ(ε) ∼= Va. Since the normal
bundle of Ma is trivial, Ma is stably parallelizable.

Corollary 3.3.11. The manifold Σ(3, 6k − 1, 2, . . . , 2) is a exotic (4n− 1)-dimensional sphere.

Later we will use the following results, for details see Appendix B and [Bk].

Theorem 3.3.12. For the sequence a = (a1, . . . , an+1) = (d, 2, . . . , 2), the (2n − 1)-manifold Σ(a) is
diffeomorphic to the plumbing of d− 1 copies of the tangent bundle of Sn along the graph

Theorem 3.3.13. The (4n − 1)-manifold constructed in section (3.2) is diffeomorphic to the manifold
Σ(3, 5, 2, . . . , 2).

Theorem 3.3.14. Consider the sequence a = (d, 2, . . . , 2) and set Ma as above. Then the Arf-Kervaire
invariant of Ma is equal to

c(Ma) =

{
0 if d = ±1 mod 8

1 if d = ±3 mod 8

Corollary 3.3.15. Σ(3, 2, . . . , 2) is a exotic (2n− 1)-dimensional sphere.
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Chapter 4

Groups of Homotopy Spheres

4.1 Construction of the Group Θn

All manifolds in this section are assumed to be compact, oriented and differentiable.

Definition 4.1.1. Let M , N be two closed oriented n-dimensional manifolds, we say that M and N are
h-cobordant if the disjoint sum M + (−N) is the boundary of some manifold W and both M and −N are
deformation retracts of W . Notice that [M ] = [N ] as elements of the group ΩSOn .

Remark. Observe that if M is diffeomorphic to N , the oriented manifold M × [0, 1] has as boundary
M + (−M) ∼= M + (−N)

Recall the construction of the connected sum M#N of two n-manifolds M and N . Choose imbeddings
i1 : Dn →M , i2 : Dn → N . Obtain M#N from the disjoint sum

(M − i1(0)) + (N − i2(0))

by identifying i1(tu) with i2((1 − t)u) for each unit vector u ∈ Sn−1 and 0 < t < 1. Choose the orien-
tation for M#N which is compatible with that of M and N . This is possible since the correspondence
i1(tu) 7→ i2((1− t)u) preserves orientation.

Proposition 4.1.2. The manifolds M#N and M +N are h-cobordant.

Proof. Consider the cylinder M × I and let i1 : Dn+1 →M × I such that i1(0) = (m, 1) for some m ∈M .
Similarly choose i2 : Dn+1 → N × I with i2(0) = (n, 1). Now make an identification

((M × I)− i1(0)) + ((N × I)− i2(0))

as above. This construction gives a manifold W with boundary (M#N) + (−(M +N)).

As an immediate result of this proposition, we get that the Cobordism groups can be defined with the
connect sum as operation addition, instead of the disjoint union.

Lemma 4.1.3. The connected sum operation is well defined (does not depend of the choosing of the
imbeddings), associative, commutative up to orientation preserving diffeomorphism. The sphere Sn serves
as identity element.
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4.1 Construction of the Group Θn

Proof. Let i1, i
′
1 : Dn → M imbeddings. The map x 7→ (i′1)−1i1(x) defines a diffeomorphism of Dn

onto itself which is a orientation preserving map. There is a diffeomorphism f : M → M such that
i′1(t) = f(i1(t)) if t ∈ Dn. Given two embeddings i2, i

′
2 : Dn → N we also construct a diffeomorphism

g : N → N with i′2(t) = f(i2(t)). Denote by M#N the connected sum associated to i1 and i2 and
(M#N)′ the connected sum associated to i′1 and i′2. The above constructed diffeomorphism induces a
diffeomorphism

H : M1#M2 → (M1#M2)′.

The associativity and commutativity is immediate from the definition.
The manifold M#Sn is diffeomorphic to M since Sn − i(Dn) is diffeomorphic to int(Dn).

Lemma 4.1.4. Let M , M ′ and N be closed and simply connected n−manifolds with n ≥ 3. If M is
h-cobordant to M ′ then M#N is h-cobordant to M ′#N .

Proof. Let W a manifold with ∂W = M + (−M ′), where M and −M ′ are deformation retracts of W .
Let A a curve in W form a point p ∈ M to a point p′ ∈ M ′ with a tubular neighborhood diffeomorphic
to Rn × [0, 1]. So there is an imbedding

i : Rn × [0, 1]→W

with i(Rn × 0) ⊆M , i(R× 1) ⊆M ′ and i(0× [0, 1]) = A.

Consider the manifold Z = (W −A) + (N − i2(0))× [0, 1] by identifying i(tu, s) with i2((1− t)u)× s for
each 0 < t < 1, 0 ≤ s ≤ 1, u ∈ Sn−1. Z is a compact manifold with boundary M#N + (−(M ′#N)).

Let see that these both boundaries are deformation retracts of Z. Consider the inclusion map

M − p j−→W −A

since n ≥ 3, both of these manifolds are simply connected. On the other hand, the homology exact
sequence of the pair (M,M − p) and (W,W −A) shows that j induces isomorphism of homology groups.
Hence a homotopy equivalence. Using this and the Mayer-Vietoris sequence over the manifolds M#N
and Z we get that

Hi(M#N,Z) ∼= Hi(M − p,Z)⊕Hi(N − q,Z) ∼= Hi(W −A,Z)⊕Hi(N − i2(0)× [0, 1],Z) ∼= Hi(Z,Z)

So the inclusion M#N → Z is a homotopy equivalence. Thus M#N is a deformation retract of Z.

Similarly, M ′#N is a deformation retract of Z.

Lemma 4.1.5. A simply connected manifold M is h-cobordant to the sphere Sn if and only if M bounds
a contractible manifold.

Proof. Suppose that M + (−Sn) = ∂W . Fill the disk Dn+1 inside Sn to obtain a manifold W ′ with
∂W = M . Since Sn is a deformation retract of W , then it follows that W ′ is contractible.

Conversely, if M = ∂W ′ with W ′ contractible, let Dn−1 ↪→ W ′ a local chart and remove its interior to
get a simply connected manifold W , with ∂W = M + (−Sn). Mapping the homology exact sequence of
the pair (Dn+1, Sn) into the pair (W ′,W ) the inclusion Sn → W induces a homology isomorphism we
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4.1 Construction of the Group Θn

get that the inclusion Sn → W induces a homology isomorphism, hence Sn is a deformation retract of
W . Applying the Poincaré-Lefschetz duality

Hk(W,M) ∼= Hn+1−k(W,Sn).

This proves that the inclusion M ↪→ W induces isomorphism of homology groups. Since M is simply
connected, M is a deformation retract of W .

Lemma 4.1.6. If M is a homotopy sphere, then M#(−M) bounds a contractible manifold.

Proof. Let H2 ⊆ D2 denote the half-disk consisting of all (t sin(θ), t cos(θ)) with 0 ≤ t ≤ 1, 0 ≤ θ ≤ π,
and let 1

2D
n ⊆ Dn denote disk of radius 1

2 . Given an imbedding i : Dn → M , construct a manifold W
from the disjoint union

(M − i(1

2
Dn))× [0, π] + Sn−1 ×H2

by identifying i(tu)× θ with u× ((2t− 1) sin θ, (2t− 1) cos θ) for each 1
2 < t ≤ 1, 0 ≤ θ ≤ π.

Therefore W is a differentiable manifold with boundary ∂W = M#(−M). Moreover, W contains M −
Int(i( 1

2D
n)) as a deformation retract and therefore is contractible.

Theorem 4.1.7. Let Θn denote the set of all h-cobordism classes of homotopy n−spheres. Then Θn is
an abelian group under the connected sum operation.

Proof. By lemmas (4.1.3) and (4.1.4), the connected sum is a well defined, associative, commutative
operation. The class of the sphere Sn is the zero element. And by lemmas (4.1.5) and (4.1.6) each
element of Θn has an inverse.

This group is called the nth-homotopy sphere cobordism group, and in the following lines we investigate
the structure of this group.

Remark. By the h-cobordism theorem, for n ≥ 5, study the structure of this group is equivalent to
study the group of classes of homotopy spheres under the relation of diffeomorphism. So, the number of
n-dimensional exotic spheres up to diffeomorphism is equal to the cardinal of the group Θn.

Since in lower dimensions the differentiable structure of a manifold is completely determined by its
topology , we get:

Proposition 4.1.8. For n = 1, 2, 3 the group Θn is trivial.

Proof. In the case n = 1, an element [M ] ∈ Θ1 is homeomorphic to S1 and it is known from differential
topology that the only connected and compact smooth 1-manifolds are (up to diffeomorphism) [0, 1] and
S1. So M is diffeomorphic to S1.

For the case n = 2, all oriented compact 2-dimensional manifolds are completely determined up to diffeo-
morphism by the Euler characteristic, that is, a 2-manifold M is diffeomorphic to S2 or to a connected
sum of T 2’s. So if M is a 2-homotopy sphere it is diffeomorphic to S2.

The case n = 3, from [Mo], for every 3−dimensional manifold M there exist an unique differentiable
structure over M . Then if M is homeomorphic to S3 it is necessarily diffeomorphic to the sphere.

Proposition 4.1.9. For n ≥ 4, the group Θ2n−1 is non trivial. |Θ7| ≥ 4.

Proof. From (3.1.12), (3.2.5), (3.3.11) and (3.3.15).

44



4.2 Construction of the Subgroup bPn+1

4.2 Construction of the Subgroup bPn+1

Let (M,f) be a closed framed manifold M of dimension n. By Whitney’s embedding theorem there is
an embedding i : M → Rn+k for k > n. The Thom–Pontryagin isomorphism with the (B, f)-structure
associated to a normal framed manifolds works in the following way to obtain a map Sk → Sn+k.(Refer
to theorem (A.19))

A framing of TM ⊕ ε1 induces a framing ϕ of ν(i), since TM ⊕ ν(i) is trivial and using (A.13) over the
Whitney sum (TM ⊕ ε1) ⊕ ν(i). By the tubular neighborhood theorem, set N a tubular neighborhood
in Rn+k around M which is diffeomorphic to the normal bundle of M . Consider a map from Rn+k to
Sk = Rk ∪ {∞} which sends the complement of N to ∞ and sends each normal fiber to Rk using the
trivialization of that fiber. The maps extends to Sn+k by sending ∞ to ∞.

Thus we have a well defined element

p(M,f) : Sn+k → Sk ∈ Πn = lim
k→∞

πn+k(Sk).

Allowing the trivialization ϕ to vary, we obtain a set of elements

p(M) = {p(M,ϕ)} ⊆ Πn.

Lemma 4.2.1. The subset p(M) contains the zero element of Πn if and only if M bounds a parallelizable
manifold.

Proof. By the Thom–Pontryagin theorem,

p(M,ϕ) ∼ 0 iff [M ] ≡ 0 ∈ Ωfrn iff M = ∂W

for some framed manifold W . Since for compact manifolds with boundary the concept of be parallelizable
and stably parallelizable are equivalent, we are done.

Lemma 4.2.2. If M is h-cobordant to N , then p(M) = p(N).

Proof. Let W be a manifold such that M + (−N) = ∂W , and by Whitney’s embedding theorem, choose
a embedding of W in Sn+k × [0, 1] so that M ↪→ Sn+k × 0 and N ↪→ Sn+k × 1. Let ϕ a framing of the
normal bundle of M , which extends to a framing ψ of the normal bundle of W since M is a retract of W .
The restriction ϕ′ = ψ|N gives a framing of the normal bundle of N . Therefore, (W,φ) gives a homotopy
between p(M,ϕ′) and p(N,ϕ′). This construction could be made starting with a normal framing of N ,
so we get that p(M) = p(N).

Lemma 4.2.3. If M and N are stably parallelizable, then p(M) + p(N) ⊆ p(M#N)

Proof. Let W1 = M × [0, 1] and W2 = N × [0, 1], and set B1 = M × 1 and B2 = N × 0. Let Hn+1 =
{x = (x0, x1, . . . , xn) : |x| = 1, x0 ≤ 0} and Dn ⊆ Hn+1 the subset x0 = 0. Choose embeddings

ik : (Hn+1, Dn)→ (Wk, Bk)

so that i2◦i−1
1 reverses the orientation. Denote W the manifold (W1−i1(0))+(W2−i2(0)), by identifying

i1(tu) with i2((1 − t)u) for 0 < t < 1 and u ∈ Sn ∩ Hn+1. Thus, W is a differentiable manifold with
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4.3 Some Computations on bPn+1

∂W = M#N + (−M) + (−N) and M has the homotopy type M ∨N .

Choose an embedding W → Sn+k × [0, 1], with a k large so that W ∩ (Sn+k × 0) = (−M) + (−N), and
W ∩ (Sn+k × 1) = M#N . So given two k-frames ϕ1 and ϕ2 on (−M) and (−N) respectively, we can
extend both them to a k-frames throughout W . Denote ψ the restriction of this framing to M#N . So
we get an homotopy p(M,ϕ1) + p(N,ϕ2) and p(M#N,ψ).

Since any homotopy sphere is stably parallelizable (see [KM, p.508]) we have,

Theorem 4.2.4. The set p(Sn) ⊆ Πn is a subgroup of the stable homotopy group Πn. For any homo-
topy sphere Σ, the set p(Σ) is a coset of this subgroup. Thus the correspondence Σ 7→ p(Σ) defines a
homomorphism p from Θn to the quotient group Πn/p(S

n).

Proof. Using the lemma (4.2.3) together the identities

• Sn#Sn ∼= Sn implies p(Sn) + p(Sn) ⊆ p(Sn) (p(Sn) is a subgroup).

• Sn#Σ ∼= Σ implies p(Sn) + p(Σ) ⊆ p(Σ) (p(Σ) is a union of cosets of this subgroup).

• Σ#(−Σ) ∼ Sn implies p(Σ) + p(−Σ) = p(Sn) (p(Σ) is a single coset).

Definition 4.2.5. By lemmas (4.2.2) and (4.2.3), the kernel of p : Θn → Πn/p(S
n) consists exactly of all

h-cobordism classes of homotopy n-spheres which bound parallelizable manifolds. Thus these elements
form a group which we denote by bPn+1 ⊆ Θn.

Theorem 4.2.6. The group Θn/bPn+1 is finite.

Proof. By theorem (4.2.4), Θn/bPn+1 is isomorphic to a subgroup of Πn/p(S
n). Since the groups Πn are

finite (1.2.2), we get the result.

In other words, The number of exotic spheres that do not bound parallelizable manifolds is finite.

4.3 Some Computations on bPn+1

In this section we will use the theory of Spherical Modifications introduced in Appendix A, which is a
powerful tool to study the homotopy type of the manifolds through a certain kind of “surgery”. The
important fact of this technique is that it is invariant under the boundary.

The group bPn+1, n odd

Theorem 4.3.1. Let n be an odd integer. Then bPn+1 = 0.

Proof. Let Mn+1 a compact framed manifold such that ∂M is a homotopy sphere. By theorem (A.20)
and Poincaré duality, M is χ-equivalent to a contractible manifold.
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The groups bP6 and bP14

Lemma 4.3.2. Let M be a (k− 1)-connected manifold of dimension 2k, k ≥ 3. Suppose that Hk(M,Z)
is free abelian with a basis {λ1, . . . , λm, µ1, . . . , µm} where

〈λi, λj〉 = 0, 〈λi, µj〉 = δij

for all i, j. Suppose further that λi can be represented by disjoint embedded spheres with trivial normal
bundles. Then M is χ-equivalent to a contractible manifold.

Proof. Let ϕ0 : Sk → M be an embedding that represents the homology class λm. Since the normal
bundle is trivial, ϕ0 can be extended to an embedding ϕ : Sk × Dk → M . Let M ′ = χ(M,ϕ) and
M0 = M−int(ϕ(Sk ×Dk)).

Consider the exact sequences

0→ Hk(M0,Z)→ Hk(M,Z)
i∗−→ Hk(M,M0,Z)

∂−→

Hk+1(M ′,M0,Z)
∂−→ Hk(M0,Z)→ Hk(M ′)→ 0

which by excision shows that Hk(M,M0) is infinite cyclic and thus there is a diagram

Z

0 Hk(M0,Z) Hk(M,Z) Z Hk−1(M0,Z) 0

Hk(M ′,Z)

0

?

Q
Q
Q
Q
QQs

λm

-

?

- -〈 · ,λm〉 - -

?

Since 〈µm, λm〉 = 1 it follows that Hk−1(M0,Z) = 0. From this we get the fact that M0 and M ′

are (k − 1)-connected. The group Hk(M0,Z) is isomorphic to the subgroup of Hk(M,Z) generated by
{λ1, . . . , λm, µ1, . . . , µm−1}. The group Hk(M ′,Z) is isomorphic to a quotient group of Hk(M0,Z). It
has a basis {λ′1, . . . , λ′m−1, µ

′
1, µ
′
m−1} where each λ′i corresponds to a coset λi + λmZ ⊆ Hk(M,Z). And

respectively with the µ′j .

The manifold M also satisfies the hypothesis of this theorem, we only have to verify that

〈λ′i, λ′j〉 = 0, 〈λ′i, µ′j〉 = δij .

Each λ′i or µ′j can be represented by a sphere embedded in M0 and representing the homology class λi
or µj of M . Thus the intersection numbers in M ′ are the same as those in M .

Iterating this construction m times, the result will be a k-connected manifold.
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Theorem 4.3.3. The groups bP6, bP14 are both zero.

Proof. Let M be a stably parallelizable manifold of dimension 2k such that ∂M is a homology sphere. By
theorem (A.20) we can assume that M is (k−1) connected, by Poincaré duality it follows that Hk(M,Z)
is free abelian and the intersection matrix has determinant ±1.

Case k = 3, 7. Since k is odd the intersection matrix is skew symmetric, hence there exists a basis for
Hk(M,Z), namely {λ1, . . . , λm, µ1, . . . , µm} with

〈λi, λj〉 = 〈µi, µj〉 = 0, 〈λi, µj〉 = δij

The obstruction to framing any embedded sphere Sk → M lies in πk−1(SO(k)) which is equal to 0 for
k = 3, 7. So by lemma (4.3.2) we have that M is χ-equivalent to a contractible manifold.

The group bP4n

Theorem 4.3.4. Let (M4n, f) be a compact framed (2n− 1)-connected manifold with ∂M a homotopy
sphere. Then (M,f) is χ-equivalent into a contractible manifold if and only if σ(M) = 0.

Proof. One direction follows from theorem (A.10) since σ is an invariant under cobordism.

Conversely, suppose that σ(M) = 0, by (A.15), one can suppose that M is (n − 1)-connected. Since
σ(M) = 0, there is a basis {λ1, . . . , λm, µ1, . . . , µm}. Each λi can be represented by an embedding
fi : S2n → M4n. Since 〈λi, λj〉 = 0, the fi can be chosen to be disjoint. Let ν(fi) be the normal bundle
associated to the embedding fi, then the obstruction [ν(fi)] ∈ π2n−1(SO(2n)).

Recall that TS2n⊕ν(fi) ∼= f∗i (TM), since TM and TS2n are stably trivial, so is ν(fi), that is i∗[ν(fi)] =
0 ∈ π2n−1(SO(2n + 1)) where i : SO(2n) → SO(2n + 1) is the standard inclusion. We have a fibration,

SO(n− 1)
in−→ SO(n)

pn−→ Sn which induces the following diagram in homotopy groups,

π2n(S2n) π2n−1(SO(2n)) π2n−1(SO(2n+ 1))

π2n−1(S2n−1)

-d2n

H
HHH

HHHHj

×2

?

(p2n−1)∗

-(i2n−1)∗

A computation gives
(p2n−1)∗[ν(fi)] = 〈λi, λi〉[S2n−1] = 0

[ν(fi)] ∈ ker((i2n−1)∗) = im(d2n)

[ν(fi)] ∈ Im(d2n) ∩ ker((p2n−1)∗) = 0.
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And since (p2k−1)∗d2k is multiplication by 2, we get that [v(fi)] = 0, or equivalently, ν(fi) is trivial.

Thus, by lemma (4.3.2), M is χ-equivalent to a contractible manifold.

By the h-cobordism theorem follows

Corollary 4.3.5. Let Σ be a homotopy sphere which bounds a stably parallelizable 4n-manifold M .
σ(M) = 0 if and only if Σ is diffeomorphic to S4n−1.

Theorem 4.3.6. Let n > 1 and t ∈ Z. There exists a framed 4n manifold (M,f) with ∂M a homotopy
sphere and σ(M) = 8t.

Proof. Let W be the manifold constructed in section 4.3. Set M = W# · · ·#W (t-times).

Definition 4.3.7. Let bn : Z→ bP4n be the group homomorphism defined by bn(t) = [∂W ] where W is
the framed manifold with signature 8t and ∂W is a homotopy sphere.

Lemma 4.3.8. bn is well defined, that is, if W1 and W2 are as above, then ∂W1 is h−cobordant to ∂W2.
Furthermore, bn is surjective.

Proof. bn is surjective immediately by theorem (4.3.6). In order to prove that bk is well defined, it
suffices to show that the connected sum ∂W1#∂W ′2 is cobordant to ∅. Set W = W1#(−W2), then
∂W = ∂W1#∂W2. Therefore, σ(W ) = σ(W1) − σ(W2) = 0, so by theorem (4.3.4) W is χ-equivalent to
a contractible manifold, that is ∂W1#∂W ′2 ≡ ∅.

Corollary 4.3.9. There is an isomorphism of groups, bP4n
∼= Z/ker(bn).

To compute the group bP4n, we try to determine ker(bn).

Definition 4.3.10. An almost framed manifold is pair (M,f) where f is a framing of TM |M−{x} for
some x ∈M .

Proposition 4.3.11. t ∈ ker(bn) if and only if there exists an almost framed closed 4n-manifold with
signature 8t.

Proof. Suppose that t ∈ ker(bn). Then there is a framed manifold (M,f) with signature 8t, whose
boundary Σ is a homotopy sphere that bounds a contractible manifold D. Set N = D + M identifying
the common boundary Σ. Thus σ(N) = 8t and TN |N−{x} is parallelizable for any x ∈ N .

Conversely, if N is an almost framed 4n-manifold with σ(N) = 8t, let D4n ⊆ N be any embedded
disc which contains the point x ∈ N . Then N−int(D4n) is a framed manifold with signature 8t and
∂N ∼= S4n−1.

Recall that for any closed manifold M4n, the Hirzebruch signature theorem states that

σ(M) = 〈Ln(p1(M), . . . , pn(M)), µM 〉

where Ln is a rational function and pi(M) are the Pontryagin classes of M . Here we use that

Ln(x1, . . . , xn) = snxn +R(x1, . . . , xn−1)

and

sn =
22n(22n−1 − 1)Bn

(2n)!
,
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where Bn is the nth Bernoulli number.

Therefore, if (M,f) is an almost framed closed manifold. Since pi(M) = 0 for i < n, σ(M) = snpk(n).
Define σM,f ∈ π4n−1(SO(4n + 1) ∼= Z) the obstruction to extending the almost framing f to a framing
of the bundle TM ⊕ ε1. Let x ∈ M be the point where f is not defined. Set D4n a neighborhood of x
and let f ′ be the usual framing of D4n. So, σM,f is the obstruction to the stable framings f and f ′ agree
in D4n − {x} ∼= S4n−1.

Now let τ : M → BSO(4n + 1) be the classifying map of TM ⊕ ε1. Since M − {x} is parallelizable,
τ |M−{x} is null homotopic and thus factors as

M BSO(4n+ 1)

S4n

-τ

?

φ

�
�
�
��3

Where φ maps to a point the complement of int D4n. So there is a 4n-stable bundle η over S4n with
φ∗η ∼= TM ⊕ ε1, and therefore [η] = ±σM,f . (Here we use that in general the set k-plane bundles over
Sn (up to isomorphism) is in one-to-one correspondence with πn−1(SO(k))).

Theorem 4.3.12. If η is an stable vector bundle over S4n, pn(η) = ±an(2n − 1)![η] where a2m+1 = 1
and a2m = 2.

Proof. By definition pn(η) = c2n(η ⊗ C), and [η ⊗ C] ∈ π4n−1(U(N)) for some N large, actually,
η ⊗ C = i(η), where i : SO(N) → U(n). Thus, c2n(η ⊗ C) ∈ H4n(S4n, π4n−1(StN,N−2n+1(C))) ∼=
π4n−1(StN,N−2n+1) is the obstruction to extending an N − 2n + 1 complex framing of (η ⊗ C) to the
southern hemisphere of S4n, and since [η⊗C] is the obstruction to extending the framing from the south-
ern hemisphere to S4n, it follows that c2n(η ⊗ C) = p∗(η ⊗ C), where p : U(N) → U(N)/U(2n − 1) ∼=
StN,N−2n+1(C) is the projection.

So there is an exact sequence

π4n−1(U(N))
p∗−→ π4n−1(StN,N−2n+1(C))

∂−→ π4n−2(U(2k − 1))→ π4n−2(U(N))

From theorem (1.2.1)

Z p∗−→ Z→ Z(2n−1)! → 0

hence p∗ is the multiplication by (2n− 1)!.

On the other hand,

π4n−1(SO(N))
i∗−→ π4n−1(U(N))

p∗−→ π4n−1(StN,N−2n+1)

this composition maps [η] to ±c2n(η ⊗ C) = ±pn([η]), so we have proved that pn([η]) = ±i∗(2n− 1)![η].

It remains to show that i∗ is the multiplication by an. We have an exact sequence (for the stable groups)

π4n(U/SO)→ π4n−1(SO)
i∗−→ π4n−1(U)→ π4n−1(U/SO)
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4.3 Some Computations on bPn+1

Since by (1.2.1) π4n(U/SO) ∼= π4n−2(SO) ∼= 0, π4n−1(SO) ∼= π4n−1(U) ∼= Z and π4n−1(U/SO) ∼=
π4n−3(SO) and π4n−1(U/SO) ∼= π4n−3(SO). The result follows from the fact that

π4n−3(SO) =

{
0 n even

Z2 n odd

We get the following results immediately from this theorem.

Corollary 4.3.13. • σM,f is independent of f .

• pn(M) = ±an(2n− 1)!σM,f .

• σ(M) =
±an22n−1(22n−1−1)BnσM,f

n .

• M is stably parallelizable if σ(M) = 0.

Definition 4.3.14. Let m and l be non negative integers, and define J = Jn,l : πm(SO(l))→ πm+l(S
l)

as follows. If [α] ∈ πm(SO(l)), it can be represented by a family of isometries αx ∈ SO(l) for each
x ∈ Sm. View Sl+m = ∂(Dm+1 ×Dl) = Sm ×Dl + Dm+1 × Sl−1 and Sl = Dl/∂Dl. Let J [α] = αx(y)
for (x, y) ∈ Sm ×Dl and J(α)(Dm+1 × Sl−1) = ∂Dl.

Proposition 4.3.15. J is a homomorphism.

Proof. Its clear that α ∼ β implies J(α) = J(β). Now, we can view J(α) as a map Im+l → Sl = Dl/∂Dl

which on Sm ×Dl is given (x, y) 7→ αx(y) and sends the complement of Sm ×Dl to ∂Dl. A similar view
of β, the sum J(α) + J(β) is putting these two maps on either side of a hyperplane. Assume that αx
is the identity map for x in the northern hemisphere of Sm and βx is the identity for x in the southern
hemisphere of Sm. So there is a homotopy from J(α) + J(β) to J(α + β) by moving the two Sm ×Dl

together until they coincide; such as the figure 4.1 illustrates.

Figure 4.1: Homotopy between J(α) + J(β) and J(α+ β)

Taking l→∞, by (1.2.1), we have a well defined homomorphism

Jn : πn(SO)→ Πn.

It is commonly known as the J-homomorphism.

Theorem 4.3.16. Let α ∈ πm−1(SO), There exists an almost framed closed manifold (Mm, f) with
σM,f = α if and only if J(α) = 0

Proof. Suppose that (M,f) is an almost framed closed m-manifold, we may assume that f is a framing
of M−intDm. Choose an embedding of M in RN so that Dm is the northern hemisphere of Sm ⊆ RN .
Let f0 be the usual normal framing of Dm ⊆ RN and fα the framing obtained by mapping x ∈ Sm−1 to

51



4.3 Some Computations on bPn+1

α(x)f0(x).

The Thom–Pontryagin construction applied to the framed manifold (Sm−1, fα) gives ±J(α). Since
α = σM,f , and f = f |Sm−1 . we get that (Sm−1, fα) = ∂(M−int(Dm), f), and therefore (Sm−1, fα)
is null cobordant. That is, J(α) = 0.

Conversely, suppose that J(α) = 0, and set Sm−1 ⊆ Dm. Let f0 be the standard framing of Dm ⊆ Sn for
N large. Since J(α) = 0, there is a framed manifold (Nm, f) such that ∂(N, , f) = (Sm−1, fα). Define
M = N + Dm pasting them throughout the boundary Sm−1. Then (M,f) is an almost framed closed
manifold with σM,f = α.

Let jn be the order of the image of the homomorphism Z ∼= π4n−1(SO)
J−→ Π4n−1. We get the following

results.

Corollary 4.3.17. • The possible values for σM,f are the multiples of jn.

• The possible values for σ(M) are the multiples of

an22n−1(22n−1 − 1)Bnjn
n

.

To finish the computation of the group bP 4n we use a difficult result, see [Ad].

Theorem 4.3.18 (Adams Theorem). Let J : πm(SO)→ πm(S). If m 6= 4n, J is injective, moreover jm
is equal to the denominator of Bm/4m.

Corollary 4.3.19. If M is an almost framed closed manifold of dimension 6= 4n, then the almost framing
of M extends to a complete framing.

Corollary 4.3.20. bP4n = Ztn where tn = an22n−2(22n−1 − 1)· numerator of Bn/4n.

From corollary 3.3.11,

Corollary 4.3.21. If gn ∈ bP4n denotes the generator, then the manifold Σ(3, 6k−1, 2, . . . , 2) represents
the element (−1)nkgn.

The group bP2n, n odd

Some of the theory needed to compute this group is developed in Appendix B.

In order to compute bP2n for n odd and n 6= 3, 7 (Recall that bP6 = bP14 = 0 from theorem (4.3.3)). We
want to define a map

bn : Z2 → bP2n

by bn(t) = ∂M , where M is any compact framed (n − 1)-connected 2n-manifold with ∂M a homotopy
sphere and c(M) = t.

Theorem 4.3.22. 1. Let M1, M2 manifolds as above, if c(M1) = c(M2) then ∂M1 is h-cobordant to
∂M2.
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4.4 The group Θn/bPn+1

2. For each t ∈ Z2 there is a framed manifold M2k such that ∂M is a homotopy sphere and c(M) = t.
In particular this theorem implies that bk is well-defined and is surjective.

Proof. 1. Let f1 and f2 be framings for M1 and M2 respectively. Let (W, g) = (M1, f1)#(M2, f2) be
the framed boundary connected sum. ∂W = ∂M1#(−∂M2) and c(W ) = c(M1) + c(−(M2)) = 0.
By theorem (B.26), W is χ-equivalent to a contractible manifold. Thus ∂M1#∂(−M2) bounds a
contractible manifold.

2. If t = 0, set M2k = D2k. If t = 1, consider the exotic sphere constructed in (3.3.15).

This shows that the group bP2n is zero or isomorphic to a cyclic group of order 2, In particular, given a
framed (n− 1)-connected 2n-manifold M with boundary the standard (2n− 1)-sphere, an almost framed
closed 2n-manifold N can be obtained from M by attaching a disk to the boundary such that they both
have the same Arf-Kervaire invariant; and viceversa. Since this is an invariant of framed cobordism, it
follows that:

bP2n = 0 if and only if there exists a closed framed 2n-manofold M satisfying c(M) = 1.

Remark. Let M be a closed framed 2n-manifold. The Kervaire invariant problem is the problem of
determine for which values of n (odd) the Arf-Kervaire invariant c(M) is non-trivial. By theorem (4.3.3),
c(M) is non-trivial when n = 1, 3, 7. Browder [Bw1] showed that c(M) is non-trivial if and only if
n 6= 2l − 1. Mahowald and Tangora [MT] showed that c(M) is non-trivial when n = 15. Barrat,
Mahowald and Jones [BJM] showed that c(M) is non-trivial when n = 31. Finally, Hill, Hopkins and
Ravenel [HHR] showed that c(M) is trivial for all n 6= 1, 3, 7, 15, 31, 63. Thus only the case n = 63
remains open.

Summarizing,

Theorem 4.3.23.

bP2n =

{
0 if n = 1, 3, 7, 15, 31, (and possibly) 63

Z2 otherwise

4.4 The group Θn/bPn+1

Let Σn be a homotopy sphere embedded in Rn+k and f a framing of its normal bundle. The Thom–
Pontryagin construction applied to (Σ, f) is an element T (Σ, f) ∈ πn+k(Sk), which is an invariant of the
normal framed cobordism class of (Σ, f). Recall that T ((Σ, f)#(Σ, f ′)) = T (Σ, f) + T (Σ′, f ′).

Lemma 4.4.1. Let f : Σn → SO(k) and let α = [f ] ∈ πn(SO(k)). If f ′ is the modification of f through
α (compare the proof of (4.3.16)).

T (Σ, F ′) = T (Σ, f)± J(α).

Proof. Since T (Sn, fα) = ±J(α), where fα is the modification of f0 of Sn through α. Thus

(Σ, f ′) = (Σ, f ′)#(Sn, f0) = (Σ, f)#(Sn, fα).

Applying T to both sides of the equation we get the result.
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4.4 The group Θn/bPn+1

Corollary 4.4.2. T (Σ) = {T (Σ, f), f is a framing of Σn ⊆ Rn+k} is a coset of J(πn(SO(k))) in
πn+k(Sk).

Define T : Θn → Coker(Jn), where Jn : πn(SO)→ πn(S) is the J-homomorphism.

Theorem 4.4.3. bPn+1 = ker(T ).

Proof. Σ ∈ bPn+1 if and only if Σ bounds a parallelizable manifold. T (Σ) = 0 if and only if there exists
a normal framing f of Σ such that (Σ, f) bounds a normally framed manifold.

We have an exact sequence

0→ bPn+1 → Θn
T−→ Coker(Jn).

Corollary 4.4.4. Θn is a finite group.

Consider the following group.

Gn =


0 if n odd

Z if n = 0 mod 4

Z2 if n = 2 mod 4

And the homomorphism bn : Gn+1 → Θn

bn(t) =


0 if n+ 1 odd

[∂Mn+1]where σ(M) = 8t if n+ 1 = 0 mod 4

[∂Nn+1]where c(N) = t if n+ 1 = 2 mod 4

With ∂M, ∂N homotopy spheres. From the computations made on section 4.3, Im(bn) = bPn+1.

Define now a map φn : Ωfrn → Gn as follow. For a class [(M,ϕ)] ∈ Ωfrn , set

φ(M,ϕ) =


0 if n odd

σ(M) if n = 0 mod 4

c(M,ϕ) if n = 2 mod 4

φ is well defined since σ and c are invariants under cobordism. And φ(M,ϕ) = 0 if and only if (M,ϕ) is
framed cobordant to a homotopy sphere.

Let φ′ = φ ◦ T−1. so there is a commutative diagram

Πn

Ωfrn Gn

@
@
@@R

φ′6
T

-φ

Note that φ′(Im(Jn)) = 0, so φ′ induces a map φ′′ : Coker(Jn)→ Gn.
In other words, we have proved.
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4.4 The group Θn/bPn+1

Theorem 4.4.5. The sequence

Gn+1
bn−→ Θn

T−→ Coker(Jn)
φ′′−−→ Gn

is exact.

Corollary 4.4.6.
Θn/bPn+1

∼= ker(φ′′).

Remark. If n is odd, φ′′ = 0 since Gn = 0. If n = 0 mod 4, we have shown that φ′′ = 0. If n = 2 mod
4 then φ′′ = 0 except in the cases n = 6, 14, 30, 62 and possibly n = 126, by theorem (4.3.23).

This summarizes in the following result.

Theorem 4.4.7. For n ≥ 4, n 6= 2 mod 4, there is an exact sequence

0→ bPn+1 → Θn → coker(Jn)→ 0.

If n = 2 mod 4, the exact sequence is given by

0 = bPn+1 → Θn → Jn
h−→ Z2 → bPn.

Where h is nonzero for n = 6, 14, 30, 62 and possibly n = 126.
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Chapter 5

Miscellaneous

In this chapter is included the computation of |θn| in specific cases using the results given in chapter 4.
So we need to compute the order of the groups |bPn+1| and |θn/bPn+1|; these groups require the order of
the groups Πn, πn(SO) and Im(Jn) (refer to [Ad]) and the sequence given by the Bernoulli numbers.

Bernoulli Numbers

n 1 2 3 4 5 6 7
Bn

1
6

1
30

1
42

1
30

5
66

691
2730

7
6

The J-homomorphism

The order of the groups Πn was taken from [Rv]. Using (1.2.1) and (4.3.18) we have,

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|πn(SO)| 2 1 ∞ 1 1 1 ∞ 2 2 1 ∞ 1 1 1 ∞
|Πn| 2 2 24 1 1 2 240 4 8 6 504 1 3 4 960
|Im(Jn)| 2 1 24 1 1 1 240 2 2 1 504 1 1 1 480
|Coker(Jn)| 1 1 1 1 1 2 1 2 4 6 1 1 3 4 2

n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|πn(SO)| 2 2 1 ∞ 1 1 1 ∞ 2 2 1 ∞ 1 1 1
|Πn| 16 4 16 528 24 4 4 3.144.960 4 4 12 24 2 3 6
|Im(Jn)| 2 2 1 264 1 1 1 65.520 2 2 1 24 1 1 1
|Coker(Jn)| 2 8 16 2 24 4 4 48 2 2 12 1 2 3 6
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Groups of Homotopy Spheres

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|bPn+1| 1 1 1 1 1 1 28 1 2 1 992 1 1 1 8128 1 2
|Θn/bPn+1| 1 1 1 1 1 1 1 2 4 6 1 1 3 2 2 2 8
|Θn| 1 1 1 1 1 1 28 2 8 6 992 1 3 2 16256 2 16

n 18 19 20 21 22 23 24 25 26 27 28 29 30
|bPn+1| 1 28(29 − 1) 1 2 1 691 · 211(211 − 1) 1 2 1 212(213 − 1) 1 1 1
|Θn/bPn+1| 16 2 24 4 4 48 2 2 12 1 2 3 6
|Θn| 16 29(29 − 1) 24 8 4 2073 · 215(211 − 1) 2 4 12 213(213 − 1) 2 3 6

Recall that the class of exotic spheres up to diffeomorphism in dimension 4 does no coincides with Θ4,
so the number of classes of 4-dimensional exotic spheres is still unknown.
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Appendix A

Spherical Modifications and Framed
Cobordism

Notice that the manifold Sp×Sq can be considered either as the boundary of Sp×Dq+1 or the boundary
of Dp+1 × Sq. Given any imbedding of Sp × Dq+1 in manifold M of dimension n = p + q + 1, a new
manifold M ′ can be constructed by removing the interior of Sp ×Dq+1 and replacing it by the interior
of Dp+1 × Sq pasting them by the common boundary Sp × Sq.

Definition A.1. Let ϕ : Sp × Dq+1 → M a smooth, orientation preserving imbedding. Let χ(M,ϕ)
denote the quotient manifold obtained from the disjoint sum

(M − ϕ(Sp ×Dq+1)) + (Dp+1 × Sq)

by identifying ϕ(u, tv) with (tu, v) for each u ∈ Sp, v ∈ Sq, 0 < t ≤ 1. If M ′ denotes any manifold which
is diffeomorphic to χ(M,ϕ) (with orientation preserving diffeomorphism) we say that M ′ is obtained
from M by the spherical modification χ(ϕ) of type (p+ 1, q + 1)

The boundary of M is equal to the boundary of χ(M,ϕ). Setting the notation D0 = {0} and S−1 = ∅, a
spherical modification of type (0, n+1) over M is the manifold M +Sn. Furthermore, if M ′ = χ(M,φ) is
obtained by a spherical modification of type (p+1, q+1) then M can by obtained from M ′ by a spherical
modification of type (q + 1, p+ 1).

Definition A.2. Let M , N two compact and oriented manifolds without boundary of the same dimen-
sion. M is χ-equivalent to N if there exists a sequence M0,M1, . . . ,Mk with M ∼= M0, N ∼= Mk and such
that each Mi+1 can be obtained from Mi by a spherical modification.

Theorem A.3. Two such manifolds are χ−equivalent if and only if the belong to the same cobordism
class.

Proof. See [M3].

From the Thom–Pontryagin theorem we have

Corollary A.4. The Stiefel-Whitney numbers, Pontryagin numbers and the signature of a compact
manifold M are invariant under spherical modifications.
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Let M be a connected manifold of dimension n and ϕ : Sp × Dn−p → M an imbedding. Denote by
λ ∈ πp(M) the homotopy class of the map ϕ|Sp×0.

Lemma A.5. Let M a connected manifold of dimension n, with n ≥ 2p+2 and M ′ = χ(M,ϕ) a spherical
modification of type (p+ 1, n− p) of M . Then the homotopy groups πi(M

′) are isomorphic to πi(M) for
i < p and πp(M

′) ∼= πp(M)/Λ, where Λ denotes a certain subgroup which contains λ.

Proof. Set q = n − p − 1. Note that p < q. Let X denote the space M + (Dp+1 ×Dq+1) by identifying
(u, y) with ϕ(u, y) for (u, y) ∈ Sp × Dq+1. The subset W ∪ (Dp+1 × 0) is a deformation retract of X.
Observe that this last subset is obtained from W by attaching a (p+ 1)−cell using the map u 7→ ϕ(u, 0),
So the inclusion map πi(M) → πi(X) is an isomorphism for i < p and is onto for i = p. Moreover, the
homotopy class λ of the attaching map lies in the kernel of this homomorphism.
A similar argument shows that πi(M

′) → πi(X) is an isomorphism for i < q, since p < q we get the
result combining with the above paragraph.

Proposition A.6. Let ξ be an m-plane bundle over a CW -complex X of dimension p < m. Then ξ is
a trivial bundle if and only if ξ ⊕ ε1 is trivial.

Proof. An isomorphism ξ ⊕ ε1 ∼= εm+1 gives rise to a bundle map f from ξ to the bundle γm(Rm+1),
since the base space X has dimension p less than the dimension of the base space of γm, it follows that
f is null homotopic, and hence ξ is trivial.

Lemma A.7. Let M be a n dimensional compact manifold which is stably parallelizable, and let λ ∈
πp(M) where p ≤ n/2. Then there exists an imbedding ϕ : Sp ×Dn−q which represents λ. Moreover, ϕ
can be chosen so that the manifold χ(M,ϕ) will also be stably parallelizable.

Proof. Since p < n/2, λ can be represented by an imbedding ϕ0 : Sp → M . Let TSp be the tangent
bundle of Sp and νq+1 denote its normal bundle in M . Then the Whitney sum TSp ⊕ νq+1 can be
identified with ϕ∗0TM which is trivial by hypothesis.

Since TSp ⊕ ε1 is trivial,

εp+1 ⊕ νq+1 ∼= ε1 ⊕ TSp ⊕ νq+1 ∼= ε1 ⊕ εn ⊕ εn+1.

To prove the fact that ϕ makes the manifold χ(M,ϕ) stably parallelizable, we need to extend a trivial-
ization f of TM ⊕ ε1 to a trivialization of TW ⊕ ε1. Where

W = (M × I) + (Dk+1 ×Dn−k)

identifying Sk ×Dn−k with ϕ(Sk ×Dn−k)× 1, ∂W = χ(M,ϕ)−M .

The obstructions to this extension lie in the cohomology groups Hk+1(W,M, πk(SO(n + 1))) which is
non zero only in the case k = p. Thus the only obstruction to extend f is a cohomology class

σ(ϕ) ∈ Hp+1(W,M, πp(SO(n+ 1))) ∼= πp(SO(n+ 1)).

So the spherical modification χ(M,ϕ) is stably parallelizable if and only if the obstruction σ(ϕ) = 0. Let
α : Sp → SO(q + 1) be a differentiable map, and define

ϕα : Sp ×Dq+1 →M

by ϕα(u, v) = ϕ(u, α(u)(v)). Thus ϕα is an embedding which represents the same homotopy class
λ ∈ πp(M) as ϕ. We will show that,
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• σ(ϕα) = σ(ϕ) + s∗(α) where s∗ : πp(SO(q + 1))→ πp(SO(n+ 1)) is induced by the inclusion.

Since p ≤ q, the homomorphism s∗ : πp(SO(q + 1))→ πp(SO(n+ 1)) is onto. Therefore, we can choose
α so that

σ(ϕα) = σ(ϕ) + s∗(α)

is zero.

Theorem A.8. Let M be a compact, connected, stably parallelizable of dimension n ≥ 2k. Then M is
χ-equivalent to a (k − 1)-connected stably parallelizable manifold N .

Proof. By lemmas (A.12) and (A.14), choose an imbedding ϕ : S1 × Dn−1 → M to obtain a stably
parallelizable manifold M ′ = χ(M,ϕ) such that π1(M ′) is generated by fewer elements of π1(M). Thus
after a finite number of steps, we can obtain a stably parallelizable manifold M ′′ which is 1−connected.
Then, after a finite number of steps we obtain a stably parallelizable 2−connected manifold M ′′ . We
continue on this way to obtain a (k − 1)− connected stably parallelizable manifold N .

Definition A.9. A framed manifold (M,f) is an oriented stably parallelizable smooth manifold M
together with a framing f of TM ⊕ ε1. A framed spherical modification χ(ϕ, g) of (M,f) is a spherical
modification χ(ϕ) of M together a framing g of TW ⊕ ε1 satisfying g|M = f ⊕ t1. Where

W = (M × I) + (Dk+1 ×Dn−k)

identifying Sk ×Dn−k with ϕ(Sk ×Dn−k)× 1. Thus ∂W = χ(M,ϕ) + (−M).

Restricting g to ∂W−M = M ′ we obtain a framed manifold (M ′, f ′). So we can consider a corresponding
definition of framed cobordism. Two closed oriented framed manifolds (M,f), (M ′, f ′) are framed cobor-
dant if there is a compact framed manifold (W, g) such that ∂W = M + (−M ′) and g|M = f , g|M ′ = f ′.
The set of framed cobordism classes of framed closed manifolds are an abelian group under the operation
of connected sum.

If f is homotopic to f ′ then (M,f) is framed cobordant to (M,f ′).

Lemma A.10. Let i : M → Rn+k be an embedding and let N be a large integer. If f is a trivialization
of TM ⊕ εN , there exists a trivialization f ′ of ν(i) such that f ⊕ f ′ ∼ tN+n+k and this f ′ is unique
up to homotopy. Conversely, if f ′ is a trivialization of v(i), there exist an unique (up to homotopy)
trivialization f of TM ⊕ εN such that f ⊕ f ′ ∼ tN+n+k.

Proof. Let ξk and ηl plane bundles over the manifold M with l > n + 1, such that ξk ⊕ ηl ∼= εk+l. It is
sufficient to show that if f is a trivialization of ξk then there exists a trivialization f ′ of nl, unique up to
homotopy, such that f ⊕ f ′ ∼ tk+l.

Now, f defines a map φ : M → Stk+l,k, since Stk+l,k is (l − 1)-connected (1.1.32) and n < l implies
that φ is null homotopic by considering the obstruction classes. Thus by the homotopy lifting property
of Stk+l,1 → Stk+l,l, φ extends to a map M → Stk+l,k+l. So f exists.

Suppose that g is another trivialization of ηl with f ⊕ g ∼ tk+l, then f ′ and g differ by a map α : M →
SO(l). Thus i ◦ α ∼ 0 where i : SO(l) → SO(k + l). But i∗ : πi(SO(l)) ∼= πi(SO(k + l)) for i < l − 1.
Since n < l − 1, i∗[α] = 0 implies [α] = 0; that is, g ∼ f ′.
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Definition A.11. Suppose that (M1, f1), (M2, f2) are normally framed manifolds (fk is a trivialization
of the normal bundle ν(ik), ik : Mi → RN embedding). (M1, f1) and (M2, f2) are normally framed
cobordant if there is a manifold W with ∂W = M1 + M2 and an trivialization g of the normal bundle
ν(i) of an embedding i : W → RN × I such that int W ∩ ∂(RN × I) = ∅ and i|Mk

= ik and g|Mk
= fk.

Theorem A.12. The set of normally framed cobordism classes of closed normally framed manifolds of
dimension n, forms a group Ω(fr, n) under the connected sum. Then

Ω(fr, n) ∼= Ωfrn
∼= lim
k→∞

πn+k(Sk).

Proof. The first isomorphism follows from applying lemma (A.17), the second one is using the Thom–
Pontryagin theorem to a (B, f)-manifolds where the (B, f)-structure is given by Bk = {∗}. Since TBk ∼=
Sk we have the result.

Theorem A.13. Let M be a compact, connected, framed manifold of dimension 2k+ 1, k > 1 such that
∂M is either vacuous or a homology sphere. Then M is χ-equivalent to a k-connected manifold N .

Proof. By theorem (A.15) we have that M is χ-equivalent to a M ′ (k − 1)-connected manifold. We use
the fact that ∂M is either vacuous or a homology sphere to prove that M ′ can be χ-equivalent to a
k-connected manifold. See [KM, Lemma 6.6].
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Appendix B

The Arf–Kervaire Invariant

The Arf–Kervaire invariant is a cobordism invariant of framed (4k + 2)-manifolds, taking values in Z2.
This theory was initially studied by Kervaire in [K].

The intersection product Hk(M,Z)⊗Hk(M,Z)→ Z is skew symmetric and has determinant ±1. Choose
a basis of Hk(M), namely {α1, . . . , αr, β1, . . . , βk} such that the intersection matrix is(

0 I
−I 0

)
.

By the Hurewicz theorem, the elements αi can be represented by disjoint embedded spheres. Let f :
Sk →M an embedding representing an element α ∈ Hk(M). Thus

f∗(TM) ∼= TSk ⊕ ν(f).

Let g be a framing of εn ⊕ TM , it gives a framing f∗g of εn ⊕ f∗(TM). If f0 denotes the usual framing
of εn−1 ⊕ TDk+1, f0|Sk gives a framing of (εn−1 ⊕ TDk+1)|Sk = εn ⊕ TSk.

The isomorphism,
εn ⊕ f∗TM ∼= εn ⊕ TSk ⊕ ν(f)

implies that the framing f∗g is a trivialization of the bundle εn ⊕ f∗TM ∼= εn ⊕ TSk ⊕ ν(f). Thus the
framing f0|Sk assigns to each point in Sk an element of St2k+n,k+n.

So, we can define an element
φ(f) ∈ πk(St2k+n,k+n) ∼= Z2 k odd

which depends on M, g, f . Actually, if two embeddings f1, f2 represent the same element α, then
ν(f1) ∼= ν(f2) and therefore we can define an element φ(α) ∈ Z2 independently of the choice of embedding.

Theorem B.1. 1. For k 6= 3, 7, φ(α) = 0 if and only if ν is trivial.

2. For k = 3, 7, ν(f) is trivial and φ(α) = 0 if and only if the spherical modification on M through
f : Sk ×Dk →M can be framed.

Proof. 1. Consider the exact sequence in homotopy associated to the bundle SO(k)→ SO(2k+n)→
St2k+n,k+n.
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· · ·πk(SO(k))
i∗−→ πk(SO(2k + n))

p∗−→ πk(St2k+n,k+n)
∂−→ πk−1(SO(k))

i∗−→ · · ·

From the definition, ∂φ(α) = [ν(f)] ∈ πk−1(SO(k)). For k 6= 3, 7, i∗ is surjective so p∗ is 0 and ∂
is injective. This implies

φ(α) = 0 if and only if ∂φ(α) = [ν(f)] = 0.

Define φ2 : Hk(M,Z2)→ Z2 as the map

Hk(M,Z2)→ Hk(M,Z)⊗ Z2
φ⊗id−−−→ Z2.

Definition B.2. Let V be a finite dimensional vector space over Z2 and 〈, 〉 a symmetric bilinear form
on V . A quadratic function is a function ψ : V → Z2 such that

ψ(α+ β) = ψ(α) + ψ(β) + 〈α, β〉.

φ is called nonsingular if 〈, 〉 is nonsingular. If α1, . . . , αr, β1, . . . , βr is a basis satisfying 〈αi, αj〉 = 0 and
〈βi, βj〉 = δij , the Arf invariant of (ψ, 〈, 〉) is defined by

A(ψ, 〈, 〉) =
∑
i

ψ(αi)ψ(βi).

The definition is independent of the choice of this basis.

Proposition B.3. Let M,φ be as above. For α, β ∈ Hk(M,Z)

φ(α+ β) = φ(α) + φ(β) + 〈α, β〉 mod 2.

Corollary B.4. φ2 : Hk(M,Z2)→ Z2 is a nonsingular quadratic function associated to the intersection
pairing.

Definition B.5. Let (M2k, f), k odd, be a compact framed (k − 1)-connected manifold with Hk(M,Z)
free abelian. The Kervaire-Arf invariant c(M,f) is defined as

A(φ2, 〈, 〉( mod 2)) ∈ Z2.

For c 6= 3, 7, c(M,f) does not depend on f .

Theorem B.6. Let (M2k, f), k odd, be a compact framed (k − 1) connected manifold with ∂M a
homotopy sphere. Then (M,f) is χ-equivalent to a contractible manifold if an only if c(M,f) = 0.

Corollary B.7. Let Σ a homotopy sphere which bounds a stably parallelizable 2k-manifold M with k
odd. Then c(M,f) = 0 if and only if Σ is diffeomorphic to S2k−1. .
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