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Introduction

At the development of the algebraic topology in the 20th century, mathematicians were interested in relat-
ing homotopy and homology invariants to topology and smoothness of spaces. In 1900, Henry Poincaré,
studying the topological properties of the standard 3-sphere, claimed that a manifold with the same
homology as S® must be actually homeomorphic to the sphere. Later, he answered his own question by
constructing a homology sphere with non-zero fundamental group. This is a classical example in alge-
braic topology and it is known as the Poincaré Sphere. So, he modified the claim by conjecturing that a
compact, oriented and connected manifold space with the same homotopy as S2 is a space homeomorphic
to the sphere. This problem was known as the Poincaré Conjecture, and remained open for more than a
century.

Poincaré’s statement was generalized to higher dimensions, known as the Generalized Poincaré Conjec-
ture: A compact, connected and oriented topological space with the homotopy type as S™ (or a Homotopy
Sphere), is homeomorphic to the n-dimensional euclidean sphere. Note that by the Hurewicz Theorem,
a space is a homotopy sphere if and only if it is a homology sphere and simply connected. Moreover,
since it was believed that the sphere had an unique smooth structure, the Conjecture turned into the
statement that a Homotopy sphere is diffeomorphic to S™ (the n-dimensional sphere with the standard
smooth structure).

So, the “exotic” differentiable structures over S™ were presumed non-existent until 1956, when J. Milnor
[MI] constructed a 7-dimensional manifold homeomorphic to the sphere which is non-diffeomorphic to
S7, yielding to a complete theory about the study of this kind of manifolds known as Ezotic Spheres.

The study of the Generalized Poincaré Conjecture and exotic spheres have in common the tools pro-
vided by Cobordism Theory, which allows to distinguish between manifolds homeomorphic but non-
diffeomorphic to the sphere. The first remarkable result is the Thom-Pontryagin theorem, where the
cobordism and the homotopy are intrinsically related, and this theorem gives rise to corollary results as
the characterization of the stable homotopy groups m,x(S*) as framed cobordism and the Hirzebruch
Signature Theorem.

With this theory at hand, in 1952, S. Smale proved the the following result:
The h-cobordism Theorem
Let M,N be smooth and simply connected n-dimensional manifolds with n > 5. If W is a compact

h-cobordism between M and N, then W is diffeomorphic to M x [0,1].

The Generalized Poincaré Conjecture for the case n > 5 follows immediately from this result. Later,



in 1982, M. Freedman provided a proof for the case n = 4. Finally, G. Perelman solved the Poincaré’s
Conjecture in 2006.

The h-cobordism theorem, which allows to characterize the topology of the spheres by its homotopy
type, also provides tools for distinguishing the exotic smooth structures over the spheres. M. Kervaire
and J. Milnor consider the class of topological n-dimensional spheres under the equivalence relation of h-
cobordism, which coincides with the class of topological spheres under the diffeomorphism relation. This
set has a group structure given by the connected sum operation, it is a finite group and it is explicitly
computable for many values of n.

In other words, the number of n-dimensional exotic spheres is finite (up to diffeomorphism).

The above results are condensed in Homotopy Groups of Spheres I [KM], but many results and proofs
are left for a second paper Homotopy Groups of Spheres II which never was published. Although the
problem of different smooth structures over S™ is almost completely solved, E| the main aim of this work
is to complete the lacking content in [KM] and provide an step-by-step study of the exotic spheres theory.

So, in Chapter [2] the generalities of the cobordism theory, the proof of the Thom-Pontryagin theorem and
the Hirzebruch Signature Theorem are presented . Later in Chapter 3] different examples of exotic spheres
in suitable dimensions are constructed. Finally the Chapter [4 are focused in determining completely the
groups of exotic spheres, finishing with the explicit computation of the order of this groups in dimensions
less than 30 presented in Chapter

IThe number of exotic spheres in dimension 4 is still unknown
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Chapter 1

Preliminaries

1.1 Vector Bundles and Characteristic Classes

This section is made for setting notation and main results related to fundamental theory of vector bundles
and characteristic classes, which will be used throughout the whole work. For a complete treatment in
this topics refer to [MS].

Definition 1.1.1. Let K = R or C. A real (or complez) vector bundle of rank n over X, is a triple
£: K" - E D X, where E and X are topological spaces, and 7 : E — X is a continuous map; which
satisfies the following conditions

(i) For any p € X the fibre F, = 7~ !(p) of m over p is a vector space isomorphic to K.
(ii) Every p € X has a neighbourhood U, such that there is a homeomorphism

L U) 2 U x KT

and the diagram commutes, which means that every fibre F), is mapped to {p} x K.
(iii) ¢v IF,: Fp — K is an isomorphism of vector spaces.
Proposition 1.1.2. Let X be a topological space. The following are examples of vector bundles over X.
1. The trivial bundle €” : K™ — K" x X — X.

2. If n: K - F 5 Y is a vector bundle and f : X — Y is a continuous function, the pullback of 7
is the bundle f*n: K™ — E — X, where F is the set of all pairs (b,e) € X x F with f(b) = n(e)

3. If X = M a smooth n-dimensional manifold, the tangent bundle R — TM — M.

4. If X = M a smooth n-dimensional manifold and i : M < R™"* is an embedding, the normal
bundle v (i) : R¥ — E — M where the space E C M x R" is the set of all pairs (z,v) such that v
is orthogonal to the tangent space T, M.



1.1 Vector Bundles and Characteristic Classes

O

Proposition 1.1.3. Let f,g: X — Y be continuous maps and £ a vector bundle over Y. If f and g are
homotopic, then f*¢ = g*¢. O

Definition 1.1.4. Let &1, & two vector bundles over the same base space B. Let d : B — B x B denote
the diagonal embedding. The bundle d*(&; x &) over B is called the Whitney sum of & and &, and
it will be denoted by & @ &, since each fiber Ep(&1 @ &) is canonically isomorphic to the direct sum

Ep(&1) © Ep(&2)-

Example 1.1.5. Let M be a smooth manifold and i : M <+ RY an embedding. We have that TM &
var(i) 2 RN x M, that is, the Whitney sum of the normal bundle and the tangent bundle of a manifold
is trivial.

Definition 1.1.6. A framing ¢ of a n-dimensional vector bundle £ is an isomorphism ¢ : £ 2 ¢". In this
case, we say that the bundle £ is trivializable with a choice of trivialization.

Denote by t™ the standard framing of €".

Definition 1.1.7. Let M be a smooth manifold. M is parallelizable if the bundle T'M is trivializable.
M is said stably parallelizable if the bundle TM @ €' is trivializable.

Recall that the Euclidean sphere S™ is stably parallelizable.

Theorem 1.1.8. Let M be a n-dimensional smooth manifold with boundary. M is stably parallelizable
if and only if M is parallelizable. O

It is known that the set of all n-dimensional planes through the origin of the space R"** denoted by
Gr,(R"%), is a compact manifold of dimension nk. It is called the Grasmann manifold. Recall that for
the case n = 1, Gry(R¥*1) is equal to the real projective space RP¥.

There is a canonical vector bundle over Gr,(R"*¥) denoted by v"(R"**). Let E be the set of all pairs
(X,v) such that X is a n-plane in R"** and v € X. The projection map E — Gr,(R¥) is defined by
m(X,v) = X. The fiber Ex over X, is canonically isomorphic to X.

Let R denote the vector space consisting of those sequences = (x1,x2, . ..) of real numbers for which all
but a finite number of the x; are zero. For a fixed k, the subspace consisting of all z = (x1,...,x%,0,...)
will be identified with the coordinate space R¥. Thus R* C R? C .- with union R®®.

Definition 1.1.9. The infinite Grassmann manifold BO(n) = Gr,(R*) is the set of all n-dimensional
linear subspaces of R, topologized as the direct limit of the sequence

Grp(R™) <= Grp(R™™) — Gr,(R"?) — ...
A canonical bundle 4" over BO(n) is constructed just as in the finite dimensional case.

Theorem 1.1.10. Let £ be an n-plane bundle over a paracompact base B. Then there exists a map
B f—5> BO(n) such that f*y™ = ¢. Furthermore, if £ = 7, then the maps fe, f,, are homotopic. O

Corollary 1.1.11. For any topological space X, the set of n-dimensional real vector bundles of over X (up
to isomorphism) is in a bijective correspondence with the set of homotopy class of maps X — BO(n). O
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1.1 Vector Bundles and Characteristic Classes

In the above notation, f¢ is the classifying map of the bundle {. Sometimes the classifying map of a
bundle will be denoted by the bundle itself, that is, for a bundle &, the notation for its classifying map is

X & BO(n).
Definition 1.1.12. The Stiefel- Whitney classes satisfy the following axioms:

(A1) To each vector bundle £ there corresponds a sequence of cohomology classes
wi(€) € H'(X, Zy),
for i =0,1,---. The class wo(€) is equal to the unit element
1€ HY(X,Zs)
and w;(€) equals zero for i greater than n if £ is an n-plane bundle.

(A2) If f: B(¢) — B(n) is a map such that f*n = ¢, then
wi(§) = frwi(n).

(A3) If £ and n are vector bundles over the same base space, then

k

wi(§ @) =Y wi(€) Uwyi(n).

i=0
(A4) For the line bundle v (RP!), the Stiefel-Whitney class w;(y!(RP1)) is non zero.

Definition 1.1.13. The Thom Space of a real vector bundle £ over a compact space X, denoted by T¢ is
defined to be the one-point compactification of the space E, this point will be denoted by ¢o(£). We write
MO(k), for the Thom space T*. Suppose there is a vector bundle 1 over a space C' and a continuous
map g: B — C. If we let £ = g*n), then g induces a map T'g : (T€,t0(&)) — (T, to(n)).

Theorem 1.1.14. There is an isomorphism H"(T¢, Zy) = H*(B,Zs) for any n-dimensional vector
bundle &. ]

Definition 1.1.15. Let M be a n-dimensional smooth manifold and let N be a closed smooth manifold.
Let g : M — (T — tg) be a smooth map, where ¢ is a k-dimensional bundle over N. Then g is said to
be transverse at the inclusion given by the zero-section N < T¢ if for all 2 € g~1(N)

Im(dgx) —+ Tg(x)N = Tg(ac) (Tf — to).
In particular, g~'(N) C M is a closed (n — k)-dimensional submanifold.

Theorem 1.1.16 (Transversality Theorem). With the above notation, every smooth map M — (T —to)
is homotopic to a map g : M — T¢ which is transverse at the zero section. O

An orientation on a real vector space V of dimension n is a choice of an equivalence class of ordered
bases, where two bases are equivalent if there exists a linear transformation with positive determinant
which send a basis onto the other one. Then, there are two possible orientations on a real vector space.

This is equivalent to a choice of a generator puy € H,(V,Vy,Z) = Z where Vo =V — 0. It gives rise to a
generator uy € H"(V,Vy,Z) = Z by the relation (uy, py) = 1.

3



1.1 Vector Bundles and Characteristic Classes

Definition 1.1.17. An orientation on a n-plane bundle &, is a choice of orientation on each fiber satisfying
the usual local triviality condition: For every point b € B(€), there exist a local coordinate system (N, h)
with b € N and h: N x RYN — 771(N) with each fiber F, over N, the homomorphism z + h(x,c) from
RY to F, is orientation preserving.

For any n-plane bundle &, let Ey be the set of all non-zero elements of E and let Fy be the set of all
non-zero elements of a fiber F' = 7w=1(b).

Theorem 1.1.18 (Oriented Thom Isomorphism theorem). Let £ be an oriented n-plane bundle with
total space E. Then the cohomology group H'(E, Ey,Z) is zero for i < n and H"(E, Ey,Z) contains an
unique cohomology class ue (the Thom class) whose restriction

ug|(p,ry) € H"(F, Fo, Z),

is equal to the generator up for every fiber F' of £. Furthermore, the correspondence x — x U u defines
an isomorphism from H*(E,Z) to H**"(E, Ey,Z) for every integer k. O

For an oriented n-plane bundle ¢ = (E,B,n) , the oriented Thom isomorphism ¢ : H'(B,Z) —
H™"(E, Ey,Z) is defined by op(z) = m*(z) U ug.

Definition 1.1.19. Let £ be an oriented n-plane bundle over B. The Euler class e(§) € H"(B,Z) is
defined by

e(§) = cp_l(ug U ug).
That is, 7*e(§) = ue|r

Remark. The Euler class has many similar properties of Stiefel Whitney classes. Some of them are
listed here.

1. If f: B(§) — B(n) is covered by an orientation preserving bundle map form & to n, then
e(§) = fre(n).
2. If £ and 7 are oriented vector bundles over the same base space, then
e(€®n) =e(§) Ue(n).

3. If the orientation of a oriented vector bundle £ es reversed, then the Euler class changes sign.
4. If ¢ is an oriented n-plane bundle with n odd, then 2¢(£) = 0.

5. Let £ be an oriented vector bundle over the base space B. The canonical map H"(B,Z) —
H"™(B,Zs) sends e(&) to wy,(§).

A final application of the Euler class is the construction of an oriented Gysin sequence.

Proposition 1.1.20 (Oriented Gysin Sequence). Let £ be an oriented n-plane bundle with projection
m: FE — B. Let mg : Fy — B be the restriction of 7 to Ey. Then for any coefficient ring R, there is a
long exact sequence

... — HY(B,R) =% H"*"(B,R) =% H'*"(Ey, R) —

where e denotes the image of e(§) in H™(B, R) under the homomorphism of cohomology induced by the
ring map Z — R. O



1.1 Vector Bundles and Characteristic Classes

Remark. Note that given any complex n-plane bundle w, we can forget the complex structure and
consider each fiber as a real vector space of dimension 2n. Thus we obtain the underlying real 2n-plane
bundle wg. If vy, -+ ,v, is a C-basis for a fiber F' of w, we take vy, ivy, - ,vp, v, to be an R-basis for
F as a fiber of wgr. So we have the following result.

For a complex n-plane bundle w with total space E, we define a (n—1)-plane bundle wq over Ej as follows.
Given a pair (b,v) € Ey, v € Fp, v # 0, let the fiber over (b,v) in wy be the orthogonal complement of v
in Fb.

Proposition 1.1.21. If w is a complex vector bundle, then the underlying real vector bundle wg has a
canonical preferred orientation. O

Definition 1.1.22. Let w be a complex n-plane bundle over B. For i < n, the i Chern class c;(w) €
H?(B,Z) is defined inductively as follows: Set ¢, (w) = e(wg). For i < n. Set ¢;(w) = 75 '¢i(wp). For
i >mn, set ¢;(w) =0.

The Chern classes satisfy the following properties

1. If f: B(w) = B(w’) is covered by a bundle map form w to w’, then
c(W) = fre(w).
2. If w and w’ are complex vector bundles over the same base space, then
c(wdw) = c(w)e(w).
3. The conjugate bundle w has Chern classes
ci(@) = (—=1)'e;(w).

Let £ be a real n-plane bundle. The complexification of £ is defined by the complex n-plane bundle with
the same base space and fiber F' ®g C, where F' denotes a fiber of &.

Tt is clear that (£ @r C)r 2 £ @ &, and also we have £ Qg C = £ Qg C, since the conjugation is a R-linear
homomorphism. Therefore, since ¢;(€ @g C) = (—1)%c;(€ @g C), the odd Chern classes cj,c3,- - of the
complexification of a real vector bundle are 2-torsion elements.

Definition 1.1.23. Let & be an n-plane bundle over B. The i'"* Pontryagin class p;(¢) € H*(B,Z) is
defined by '
pi(§) = (=1)"c2:(§ ®r C).

The total Pontryagin class p(§) € H*(B,Z) is the cohomology class
p(&) = p1(&) + -+ + Ppay2)(§)-
The properties of Pontryagin classes follows from those of Chern classes. We list some of them here.

1. If f: B(§) — B(n) is covered by a bundle map from & to 7, then

p(&) = f*p(n).



1.1 Vector Bundles and Characteristic Classes

2. If £ and n are vector bundles over the same base space, then
2p(§ & n) = 2p(&)p(n)-
There is a relation between the Pontryagin classes with the Euler class.

Proposition 1.1.24. If £ is an oriented 2n-plane bundle, then p, (&) = e(£)2. O

Theorem 1.1.25. Let R be an integral domain containing 3. Let p; the image of p;(3") and e the image
of e(3"™) under the cohomology map induced by the ring map Z — R. Then for odd n,

H*(BSO(n),R) = Rpy, .- . ,p%],

and for even n,

H*(BSO(n),R) = R[p17...,pnT—27e].

Corollary 1.1.26. H'(BSO(n),Z) if finite if i is not divisible by 4 and has rank p(i/4) if i is divisible
by 4.

Given any partition I of n, there exist an unique polynomial s; € Zl[t1,...,t,] satisfying

8[(01,' .. 7O-n) — Ztl — thl ...t;k
where the > indicates that we take every monomial that can be formed with exponents exactly (r1,-- -, rg).
And oy, -+ , 0, are the elementary symmetric functions of the ring Z[ty, ..., t,].

Definition 1.1.27. Let M be a compact oriented manifold of dimension 4n. There is a fundamental
homology class pps € Hypn(M,Z). For any vector bundle £ over M and any partition I = (41,...,4) of
n, we define a Pontryagin number

PI[& = <p11(§)pzk(€)huM> € Z,

and a s-number
Stlp(€)] = (s1(p1(£); - - -, Pn(8)), uar) € Z.
Proposition 1.1.28. Let £ and 5 be vector bundles over M. Then

2s1(p(€®@m) =2 Y s1,(p(€))sr (p(n)).

I Ix=1

If £ is a vector bundle over another manifold IV, then

§><77 Z SIl Slz ()}

Li=I
O
Example 1.1.29. Let 1 =TCP", g ® C= 7 & 7, thus
(R ®C) =c(T®T)
L+ea(mr®C) + -+ con(tR ® C) = ¢(7)c(T)
1= pi1(7e) +pa(R) — - £ palme) = (1 = 2)" (1 4 2)" !
p(re) = (1 +2%)"

Therefore
P(n) [TR] =n-+1

6



1.2 Homotopy Groups

Let Gry, (R"**) denote the Grassmann manifold consisting of all oriented n-planes in R"**. This can be

topologized in order to give a manifold structure of dimension nk. Gr, (R"**) is a double covering of the
unoriented Grassmann manifold Gr,(R"**). Passing to the direct limit k — oo, we obtain the oriented
infinite Grassmann manifold .
BSO(n) = lim Gr,(R"™).
k—o0

The covering map f, : BSO(n) — BO(n) lifts to an oriented n-plane bundle over BSO(n), fiy™ =3™.

Proposition 1.1.30. Let B be a topological space. There is a bijective correspondence between the
homotopy class [B, BSO(n)] and the set of oriented n-plane bundles over B (up to isomorphism).

Definition 1.1.31. Let K = R or C. The Stiefel Manifold St ;(K) is the set consisting of k-tuples
v = (v1,...,v) of orthonormal vectors in K™, under the equivalence relation v ~ w if and only if
Span(v) = Span(w).

Proposition 1.1.32. There are diffeomorphism St, 1 (R) = O(n)/O(n—k) and St,, 1 (C) =2 U(n)/U(n—
k). Furthermore, St, ,(R) is (n — k — 1) connected.

Theorem 1.1.33. Let B a CW-complex of dimension n and let £ be an n-dimensional real vector bundle
over B. There exists a framing of £ over the j-skeleton of B if and only if a certain well defined obstruction
class

0;(€) € H (B, mj—1(Stnn—j+1(R)))

is zero.

1.2 Homotopy Groups

Let G,, denote one of the following groups: O(n), SO(n) or U(n). There are natural inclusions G, N
G+1 and define the direct limit associated to these sequence as

G = lim G,

n—oo

The following theorem is due to Bott [Bt]

Theorem 1.2.1 (Bott Periodicity Theorem). 1. 7. (U) is periodic with period 2, mo(U) = 0, 7 (U) =
Z.

2. m,(O) is periodic with period 8 and the homotopy groups are

nm0d8‘01234567
™(0) | Zy Zy 0 Z 0 0 0 Z
3. For all n, there are isomorphism
T (U/SO) = 7, _2(SO)
Moreover, Borel-Hirzebruch [BH] prove that
WQn(U(n)) = Zn!
for n > 0. O



1.2 Homotopy Groups

Together with the Freundenthal Suspension Theorem, another important result about homotopy groups
of spheres was proved by Serre. [Si]

Theorem 1.2.2. For k > n+2, the homotopy group 7,44 (S*) is independent of k. Moreover, the group
Tnak(S¥) is finite. O

This group is denoted the n'-stable homotopy group of spheres, I1,,.



Chapter 2

Thom—Pontryagin Theorem

In his Ph.D. thesis [Th], René Thom, relates cobordism theory with stable homotopy theory, and since
the Thom—Pontryagin theorem was initially intended as an approach to the computation of homotopy
groups of spheres, the application to yield information about manifolds shows that it is highly productive.

2.1 Cobordism Categories

Definition 2.1.1. A cobordism category (C,0,1) is a triple satisfying:
1. € a category having finite sums (coproducts) and an initial object (.
2. 9: C — € an additive functor with 99M = () for any object M and 90 = ().
3. i:0 — Id a natural transformation of additive functors, where Id denotes the identity functor.

4. C has a essentially small subcategory Cy (a Set) such that each element of € is isomorphic to an
element of C.

Example 2.1.2. In the case of the category of differentiable manifolds, where the sum operation is given
by disjoint union, we take ) to be the empty manifold and i to be given by the inclusion of OM in M.
The existence of a small subcategory follows from the Whitney embedding theorem.

The fundamental notion in cobordism is the following equivalence relation.

Definition 2.1.3. In a cobordism category, two objects M, N are cobordant, M = N if there exist
objects V, W such that M + 90V = N + oW.

This relation of cobordism has these properties.

Proposition 2.1.4. 1. = is an equivalence relation on €, and the equivalence classes form a set.
2. If M = N then OM = ON.
3. For all M, OM = ().
4. f M =2 N and M’ =2 N’ then M + M' = N + N'.

Proof.



2.1 Cobordism Categories

1. Reflexivity and symmetry follow from the properties of isomorphism. For transitivity, suppose
that M = N and N = L, then there exist objects U,V, X,Y of C with M 4+ 90U = N 4 0V, and
N+0X=L+9Y. So

M+ (U + X) 2 M + U + 0X
>~ N+ 0V + 0X
~ [+ 0V +09Y
~L+3(V+Y).

The fact that the equivalence classes form a set follows from the existence of the small subcategory
Co-

2. If M = N, then there exists objects X,Y with M + 90X = N + 0Y. Then

OM = OM + 0
& OM 4 90X
=~ 9(M + 0X)
~ J(N +9Y)
>~ ON + 00Y
~IN + 0 = ON.

3. OM + 00 = + OM, since 00 = @). Therefore OM = (.

4. We have M + 90X =2 N +9Y and M’ + 90X’ = N’ + 9Y”, for some objects X, X', Y,Y’. Then we
have M + M’ + (X + X') 2 N+ N' +9(Y +Y).

O

In the case of differentiable manifolds, the original definition of cobordism states that two manifolds
without boundary M, N are cobordant, if there exist a manifold W with boundary such that M+N = 0W.
Now we show that these two definitions are equivalent.

Proposition 2.1.5. In the case of manifolds without boundary, categorical definition for cobordism
agrees with the original one.

Proof. Suppose that M and N are cobordant in the categorical sense. Then there exist manifolds X,Y
with M +0X X N+9Y. Let Wy =M xI+ X and Wo =N x I +Y. Since M = N, W7 and W5 can
be glued along that common boundary to form a manifold W with OW = M + N.

Conversely, now suppose that there exist a manifold W such that OW = M + N. Then M + oW =
M+M+N=ZN+IMxI). SoM=N. O

Indeed, the set of equivalence classes of the cobordism relation form a semigroup, as we will show with
the following definitions and results.

Definition 2.1.6. An object M of C is closed if OM = (). We say M bounds if M = ().
Actually, these definitions are compatible with the cobordism relation and sum operation.

Proposition 2.1.7. Let M, N objects in C.

10



2.2 (B, f) Manifolds

1. Suppose M = N. Then M is closed if and only if N is closed, and M bounds if and only if NV does.
2. If M and N are both closed, then M + N is closed. If M and N both bound, then M + N bounds.
3. If M bounds then M is closed.

Proof. 1. The statement about closed objects follows from the property 2 in the lemma (2.1.4)), and
the statement about bounding objects follows from the fact that = is an equivalence relation.

2. If M and N are closed, then OM = () =2 9M. Thus (M + N) 2 IM + IN =2+ () = (. From the
property 4 in the lemma ([2.1.4)) follows that if M and N both bound, then M + N also bounds.

3. If M bounds then M = (. Thus, by property 2 of lemma (2.1.4), 9M = 9 = (). So M is closed.
[

Now immediately we have the following result.

Theorem 2.1.8. The set of equivalence classes of € under the relation of cobordism has a commutative,
associative operation induced by the addition in €. The class of () provides an identity element for this
operation. O

This allows to make this definition.

Definition 2.1.9. The Cobordism Semigroup Q(C, d,1) is the set of equivalence classes of closed objects
of € with the operation induced by the addition in the category.

2.2 (B, f) Manifolds

In order to compute the cobordism semigroups, we need to consider manifolds endowed with additional
structure.

Definition 2.2.1. Let f; : By — BO(k) be a ﬁbrationﬂ Let £ : M — BO(k) be a k-vector bundle over
M. A (By, fx) structure on & is an equivalence class of liftings £ : M — By (that is, £ = fr 0 £). This
equivalence relation is given by the homotopy relation.

To give a well defined notion of a (B, fi) structure on a manifold M, we will use the Whitney Embedding
theorem to produce and embedding i : M — R and we proceed to consider (B, fr) over the normal
bundle vy, (7). However, we need the following lemma to allow us make a definition independent on the
embedding.

Lemma 2.2.2. For a k sufficiently large, there is a bijective correspondence between the (By, fx) struc-
tures on the normal bundles vy (i1) and vy (i2) associated to the embeddings iy,is : M — R"* where
M is an n-dimensional smooth manifold.

Proof. For k sufficiently large, any two embeddings i1, is are isotopic by a map H : M x I — R"t*_ The
family of normal bundles (H|prx:)* (TR" % /T M) gives a homotopy of v(i1) and vas(i2). Thus we get
a well defined equivalence relation of the two normal bundles. The bijection follows from the homotopy
lifting theorem. O

LA fibration denotes a continuous map p : £ — B satisfying the homotopy lifting property
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2.3 (B, f) Cobordism

Let (B, f) denote a sequence of fibrations fj : By — BO(k) together with maps g : By — Bgy1 such

that the diagram commutes.
9k

By, By i1

{fwd

BO(k) —~ BO(k +1)

Tk

Where j, : BO(k) — BO(k + 1) is the inclusion induced by the standard inclusions Gj(R"T*) —
Gk+1(Rn+k+1).

Now suppose we have a (By, fi) structure vy (i) : M — By, on the normal bundle v/ (7) of an embedding
i: M — R"*_ This induces a (Bj1, fr+1) structure on the normal bundle vy (i) of the embedding
i' =ix0:M— R+ by setting v (i') = g,Uar (i) since

Serronm (@) = frorrgwn (4) = Gr froae (i) = Jrvar (i) = v(i').

Definition 2.2.3. A (B, f) structure on a manifold M is an equivalence class of compatible (B, f)
structures on the normal bundles of inclusions of M under de above construction; where the equivalence
is given by agreement for sufficiently large & subject to the bijection of lemma ([2.2.2)).

We illustrate this definition by considering the following important examples.
Example 2.2.4.

1. Let By = BO(k) and fi be the identity map. Every manifold will have an unique (BO,Id)
structure, thus the class of (BO, Id) manifolds is simply the class of all manifolds. This class is
denoted by Q"".

2. Take By = BSO(k) and f;, the map which ignores the orientation. Every oriented manifold have
an unique (BSO, f) structure because the choice of the lifting is given by the orientation. Then
the class of (BSO, f) manifolds is the same class as the class of oriented manifolds. This class is
denoted by Q9.

3. Consider the fibration O(k) — EO(k) ELN BO(k) where EO(k) is a contractible manifold. A
manifold M have a (B, f) structure if and only if there exists a framing of the bundle v(4) for some
embedding i : M — R™**. This class of (B, f) manifolds is the same class of normally framed
manifold. This class is denoted by Qf7.

2.3 (B, f) Cobordism

Definition 2.3.1. Let C be the category whose objects are compact manifolds together with a specified
(B, f) structure, and whose maps are the smooth, boundary preserving inclusions with trivial normal
bundle inducing compatible (B, f) structures. Let 9 : € — € be the boundary functor, inducing (B, f)
structures by the inner trivialization. Let i : @ — I be the inclusion of the boundary with inner
trivialization. Then (€, 0,1) is a cobordism category, called the cobordism category of (B, f) manifolds.

12



2.3 (B, f) Cobordism

We denote by Q(B, f) the semigroup (€, d,4). It can be written as
oo
UB,f) =P W(B.f),
n=0

where Q,,(B, f) denotes the subsemigroup of equivalence classes of n dimensional manifolds.

In fact, Q(B, f) is not simply a semigroup.
Proposition 2.3.2. Q(B, f) is an abelian group.

Proof. Take a (B, f) manifold M"™ € Q(B, f), choose an embedding i : M — R"** with a lifting
v(i) : M — By inducing the correct (B, f) structure on M. Let j : M x I < R"**+1 be the obvious
embedding. If 7: M x I — M is the projection. Since frv(i)m = v(i)m = v(j) we get a (B, f) structure
v(j) : M x I — By, given by v(j) = v(i)m. The induced (B, f) structure on M x 0 is the same as that on
M,so M =2 M x0 as (B, f) manifolds. If we let M’ = M x 1 with the inner induced (B, f) structure, we
have that M + M’ =2 9(M x I) = (), and thus M + M’ = (). Hence M has an inverse, M’', and Q(B, f) is
an abelian group. 0

Apply this construction to (B, f) manifolds. There is a map ji : BO(k) — BO(k + 1), and we see that
Ji(*) = 4% @ €!, where €! is the trivial line bundle over BO(k). Note that T'(v* @ e') = ST*.

So we have a map Tj, : XT+* — Ty¥+1. Also we have a map g,jf,j+1'yk+1 — fry1 induced by g,. By

commutativity g; fi,, = frjiy" ™. Thus there is a map fij, *v*™ — fi, 17"}, and this yields a map

T : Tfije x 7" — Tf,:ﬂvk"’l.
Finally, using that by definition T f}; j;’y"“‘+1 = T By+1 and the above observations, we have that
Thig" =THG @)
= T(fi1* @ fie)
= ST fi*
= YT By.

So,
Tg;€ :YXTB, — TBkJrl.

And we obtain a new commutative diagram

ETBk Tgk

TBit1
ST fr T frt1
STBO(K) —2*+ BO(k +1)

Since E# : Trn+k(TBk,t0) — 7Tn+k+1(ZTBk,t0) and Tgk# : Trn+k+1(ETBk,t0) — 7Tn+k+1(TBk+1,t0)
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2.4 Thom—Pontryagin Theorem

we obtain a map Tgk# o 2# : 7Tn+k(TBk, to) — 7Tn+k+1(TBk+1, to).

This allows to define the homotopy group

lim 7Tn+k(TBk, to).
k—o0

Now finally we are in condition to state and prove the Thom—-Pontryagin Theorem.

2.4 Thom—Pontryagin Theorem

Theorem 2.4.1. The cobordism group of n-dimensional (B, f) manifolds €, (B, f) is isomorphic to the
homotopy group limy . eo Tnt% (T B, to)-

The proof will be focused in several steps.

Let M™ be a (B, f) manifold. Let i : M < R"** be an embedding and v = v(i) : M — BO(k) the

normal bundle associated, N the total space of this bundle and 7 : N — M the projection. Choose a
lifting v : M — By, giving the right (B, f) structure.

Recall N = {(z,v) € M x R"**|v € T,M*} so it can be considered as a embedded submanifold of
R"+F x R"** (using the embedding i), and there is an exponential map

exp : R"TF x R"TF 5 RHE
given by exp(i(z),v) = i(x) + v. We have that exp|;ar)xo = 4 and it is a differentiable map, so for some

€ > 0, exp|y. is an embedding where N, is the subset of IV consisting of vectors of length less or equal to €.

Define ¢ : R"** — N_/ON, by sending de interior of N, to itself, and R"** — int(N.) to the point
ON.. This map can be extended to the compactification of R"** by sending co to N, to obtain a map
c: 8"k N_/ON..

Note that with e = 1, N;/ON; = TN, so let e ! : N./ON. — TN be the multiplication by 1/e. Consider
0c = ¢ toc: S"k — TN, this map sends int(N,) diffeomorphically to TN — tg.

Now let j¥ : 4*(R"**) — +* be the standard inclusion and n : N — ~¥(R"*¥) the bundle map
(z,v) = (Ng,v). Then there is a map (j¥ on) x (Wox) : N — +* x By. This is injective since n

is.
If we denote by p : v¥ — BO(k), we have that

fr(Wom(z,v)) =v(z)
=D Ojﬁ(Niv’ U)
= p(jy, o n(m, z)).

So the image of this map is inside of f{7*. Thus there is a bundle map [ : (j¥on) x (Vow) : N — fiv*,
inducing a map T7: TN — Tf}j'yk =TDBy.
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2.4 Thom—Pontryagin Theorem

Finally define 0; 7 (M) : (S"**,00) — (T'Bg,t) to be the composition T1 o g.. Observe that this map
embeds int(N.) into T By, and the rest of S™** into .

For a decreasing €', ;5. is homotopic to 6; 5 since N, and N/ are; and for an equivalent choice of
v also will give homotopic maps by the definition of equivalence of liftings. This gives a well defined
QZ(M) € 7Tn+k(TBk, t()).

Now we will prove that actually 6; (M) is compatible with the structure of direct limit of klim Tk (T B, to)-
— 00

Lemma 2.4.2. Let t : R*t* — R?T*+1 the inclusion. Then the embedding tos : M — R*T*+1 gives

rise to the map T'g; o X0;, that is, 8;; = T'gr o X6;.

Proof. Let Ik : A#(R"F) — Ak+LRrHFHL) o N — E(v(ji)) and s,4, @ S™TF — SnHEFL be the
respective extensions of j. So
-1

~ ~ 1 k
v(ji) = grv, €5i CjiSntk = Tnoe ‘c,m=myn,ngn = lyn

thus,
Ojisntr = T((E nsi) <ﬁ<jz'>7rﬁ>>e;fcﬁsn+k
= T((jn " "ngi) x (Wﬂ)%))TU oele
= T((jn " ngim) x (V(JZ)WM))
= T((p+ nn) x (geim))e”
= T((jyn) x (grvm))e e
= T'(gbs)-
And therefore, 0;; = T'gy, 0 £0;. O

The next step is to prove that 6; is independent from the choosing of the embedding.

Lemma 2.4.3. Let i/ : M + OW — R"*_ If k is sufficiently large (depending only on M), 6; and 6,
are homotopic.

Proof. The idea is to get a (B, f) embedding of M x I + W in R"™* x I agreeing with i on M x 0 and
with ¢ on M x 1+ 0W, and we use this embedding to construct the homotopy. See [Stl p.20]. O

Note that using lemma ([2.4.2) to the initial embedding ¢ we get a k sufficiently large, and then applying
lemma (2.4.3) with W = ), we see that 6;(M) is independent of the choosing of ¢ (as an element of
limy 00 Mgk (T By, to))-

Further, suppose now that M and M’ are cobordant, then there exist (B, f) manifolds W, W’ with
M+ 0W = M’ + 0W'. Applying lemma (2.4.3)

O(M) ~O(M +0W) ~ O(M' +0W') ~ O(M").
And therefore, finally we have a well defined map

O: QR(B,f) — klim 7Tn+k(TBk,t0).
—00
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2.4 Thom—Pontryagin Theorem

Proposition 2.4.4. O is a group homomorphism.

Proof. Choose [M,], [Ms] € Q,(B, f) and choose k and embeddings i1 : M; — R*T* iy : My — RHF
such that M; and Ms are in different half planes. Note that ©(M; + Ms) is given by the composition

Sn-‘rk N Sn-‘rk vV Sn-i-k w TBk

Where the first map is collapsing the equator to a point, yielding two copies of S"+*. However, this
composition is actually the definition of sum of the homotopy classes ©(M;) + O(M,). O

Proposition 2.4.5. O is surjective.

Proof. Choose a representative 6 : (S"* p) — (T'By,to) of a class of limy_,oo T k(T By, o). We have a
map

Tfeof: (S p) = (MO(k),to).
Since MO(k) = lim,_,0o TY*(R¥**) and (T fy o 0)(S™*) is compact, exists some s such that (Tf o
0)(S"tk) C TH*(R*+#). Using (1.1.16) and the fact that Gri(R¥**) is a embedded submanifold of

T~*(RF*#) — t4 through the zero section. (Recall that To*(R¥*%) — ¢, is a manifold), we deform T fy o 6
to a map hy satisfying the following;:

1. hy, is differentiable on the preimage of some neighborhood of Gry,(RF*#).
2. hg is transverse regular on Gry (Rk+s).

3. Setting M = h; ' (Gry(RFT#)) there is some tubular neighborhood N of M such that hy|x is a
bundle map (Actually N is isomorphic to the normal bundle of M).

4. There is a closed set V containing tq in its interior, for which T f o 6 agrees with h; on hgl(V).

Since hy|as classifies the normal bundle of M, we can deform it by homotopy to a map h : (S"** p) —
(MO(E),tg), satisfying the above properties and such that

hla = v: M — Gri(RFT) < BO(k),
and h is simply the usual translation of vectors in some normal tubular neighborhood of M.

Tfi, : TBy, — MO(k) is a fibration except in the point ¢y, and ty ¢ T'fx 0 0(S"T* — h=1(int(V))), by the
covering homotopy theorem we find a homotopy

Hp : (S™tF — h=1(int(V))) x I — TBy,

such that Hy = 6 at 0 and T'fx, o H(z,t) = h(x) for all ¢t € I. By (4), we may take Hy to be pointwise
fixed on the boundary of V. Thus Hy can be extended to a homotopy

H: (S"™ p) x I — (TBy,t),
by sending h=1(V) to the point p. Set 01 = H|gnx ;-
We have that 07! (By) = h~Y(BO(k)) = h~Y(Gr(R*+%)) = M. Actually, 0|y gives a lift of the normal

map h|y since T'fi, 0 01 = h, and we chose h agree with the normal map of M. This makes a (B, f)
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structure for M.

Now consider ©(M) with this (B, f) structure, since we chose h to be just translation around M, through
the definition of ©(M), we can find N, such that 61|y, = O(M)|n.. Since T By, — By, can be deformed to
to we can homotope 6, to ©(M). So § ~ 01 ~ (M) and thus, O is surjective.

O
Proposition 2.4.6. O is injective.

Proof. Let M be a (B, f) manifold with ©(M) = 0. Then there is a k such that ©(M) : (S"+* p) —
(T By, t) is homotopic to the constant map 6y : S"** — ¢y by a homotopy H : S"T% x I — TB;,.

Choose H such that for some § > 0, H|gn+x x t = O(M) for ¢ < §. As the previous proposition, by
compactness T'fy o H(S"F x I) C T+*(R***) for some s. As before, we deform T'f; o H to a map

K:S"™ x I — MO(k),

which is smooth near Gry(RF*#), transverse regular on Gry(RF**) and such that K = Tf; o H on
N, x [0, 6] for some d > 0. By transversality , W = H~1(Gry(R¥*#)) is a submanifold of R"** x I. Since
K|gnirx1 = Tfr, 0 H|gniry1 is the constant map at to we see that OW C RF** x 0. Since K = T'fy o H
on N, x [0,0] we see that OW = M.

We have only to find a (B, f) structure on W compatible with that on M. Further homotope K to get
K| to be the normal map, and applying the covering homotopy theorem from T'fi, o H to K, we obtain

a homotopy form H to a map
0: Sk x I — TBy,

such that 0| gn+ry; = O(M) for small ¢ and | gn+ry1 = 0o. Actually, 8|y is a lifting of the normal map
K|w. This gives a (B, f) structure on M which induces de correct one on M = 0W. So M = 0 in
O, (B, f) and thus © is injective O

Some computations on specifically (B, f) structures are:

Corollary 2.4.7. 1. Qu? = Zy[z;] where z; is a generator of degree not of the form 2% — 1.

2. 059 ® Q = Q[y,] where ¥, is a generator of degree 4n.

3. Qflr = limkﬂoo 7Tn+k(5k). O]

2.5 Determination of 2°° @ Q

Now we will determine the structure of Q°° ® Q, recall that tensoring with Q kills the torsion of the ring
Q59 and preserves the free structure. By the Thom-Pontryagin theorem, we have

QJ0 ~ Jim Tnsk(TBSO(K), to).

We will use the Rational Hurewicz theorem [Kr].
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Theorem 2.5.1. Let X be a simply connected topological space with 7;(X) ® Q = 0 for ¢ < k. Then
the Hurewicz map
h®Q:mp(X) ®Q — Hi(X,Q),

induces an isomorphism for 1 < i < 2k and a surjection for ¢ = 2k 4 1.
Theorem 2.5.2. Q59 is finite for n not divisible by 4, and has rank p(n/4) for n divisible by 4.

Proof. By the Thom—Pontryagin theorem

QJ0 ~ Jim 7, (TBSO(k), to)-

Choose k > n, by taking the limit of the finite complexes T3*(R"**) and using the previous theorem,
we have that
rank 7, (TBSO(k),t9) = rank Hy,4,(TBSO(k),Z).

But this is the same as the rank of H, (T BSO(k), to, Z) by the exact sequence of the pair (T BSO(k), to).
Since the Hom(-,Z) functor preserves the free part of a group, this rank is the same as the rank of

H" K (TBSO(k),to,Z). By
H" " (TBSO(k),ty,Z) = H"(BSO(k),Z).

By Corollary (1.1.26)), this last is finite for n not divisible by 4 and has rank p(n/4) for n divisible by
4. O

Actually, Q€ = D, Q59 has a structure of a graded Z—algebra.

Proposition 2.5.3. Q°C is a commutative graded Z-algebra with product induced by the Cartesian
product of manifolds.

Proof. If M, M’ , N are closed and M = M’ there is a compact manifold W such that OW = M + (—M").
Then

O(M x N) = (OW X N) + (=(W x ON)) = (M + (=M")) x N) + (W x ) = (M x N) + ((-M') x N)

and so M x N = M’ x N. Analogously, if N = N’ then M x N = M x N’. Thus the Cartesian
product induces a well defined product on Q%Y. By the inner properties of the Cartesian product, this
induced product is also commutative, associative and distributive with respect to +. Recall that the
multiplication is graded and the identity element is the class of the manifold consisting of single point

{}. O
Theorem 2.5.4. Q°° ® Q is the free Q-algebra generated by CP?" for n > 1.

Proof. By (1.1.29)
Py (TCP*™)g) =2n+1

Let m = 4n and I = (41,...,4x) be a partition of n. Define
M; = CP** x --- x CP**
Let I’ another partition of n, and by (|1.1.28))

Splp(Mp)) = Y Snlp(Mn)]--- Sr, [p(Mr,)]
IyIi
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If I’ does not refine E| I, Sp[p(M;)] must be zero since there is no way to choose the partitions Iy, .. ., Ij.
Also, if I' =1, S;(p(My)) = 1.

Consider the matrix indexed by the partitions of n ordered by the order I < I’ if I’ refines I. So,
these calculations show that this matrix is triangular with 1’s on the diagonal. Therefore it has non-zero
determinant and the Pontryagin numbers of the manifolds M are linearly independent over Q. Since
the polynomials s; are a basis for the symmetric functions of degree n, the manifolds M; are linearly

independent over Q as elements of Q59 and there are exactly p(n) of them, so they form a basis for
QSO

m

We conclude that the set of classes of CP?" is algebraically independent as elements of Q%Y ® Q. Since
(2°Y ® Q) has no torsion, by theorem (2.5.2) it is 0 if 4 is not divisible by 4, and has rank p(i/4) for i
divisible by 4.

These ranks are the same as (Q[CP?"])? for all i. So,
0°° ® Q = Q[CP*™].
O

Corollary 2.5.5. Let M be a compact oriented 4n-manifold. If M is the boundary of an oriented (4n+1)
manifold W, then all of the Pontryagin numbers of M are zero.

Proof. There are exact sequences

Hap1 (W, M, Z) % Han(M,Z) <> Hyp (W, 2)
and .

H*(W,Z) 5 H*™(M,7) > H*" Y (W, M, 7).

Let pw,p € Hany1(W,M,Z) be the fundamental class of the pair (W, M) and un € Hupn(M,Z) the
fundamental homology class of M. Then Juw ar = par. Since there is an unique outward pointing
normal vector along M C W so

TWy =TM @€'

Thus
p(TW|n) = p(T'M).

Therefore for any partition I of 4n,

Pr[M]

PrTW|um]

(
(@pr(TW), par)
= ("pr(TW), Opw,ar)
(
(

By exactness. O

LI’ refines I if I' = I - - - I}, where each I; is a partition of i;
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2.6 The Hirzebruch Signature Theorem

2.6 The Hirzebruch Signature Theorem

This theorem is a special case of the Atiyah-Singer theorem, it is due to Hirzebruch and it is closely
related to the cobordism as an application.

Recall that if we have a quadratic form represented by a matrix A over Q, the signature of this form is
the number of positive eigenvalues minus the number of negative eigenvalues.

Definition 2.6.1. Let M be a compact oriented manifold of dimension n. The signature of M, o(M), is
defined as follows: if n is not divisible by 4, then (M) = 0. If n is divisible by 4, say n = 4m, we define
o(M) to be the signature of the rational quadratic of Q on H?™(M,Q) given by

Qz) = (z Uz, um) € Q,
where uy € Hy,(M,Q) is the fundamental rational homology class of M.

In the case n = 4m, the signature is computed by choosing a basis 1, ...,z of H*™(M,Q) for which
the symmetric matrix ((x; U x;, uar))i; is diagonal, we subtract the number of diagonal negative entries
from the number of diagonal positive entries. This value is o(M).

Remark. By the Poincaré duality, the computation of the signature of a 4m-dimensional manifold is
equivalent to compute the signature of the quadratic form given by the N (intersection) product in the
2mt"-homology.

H*"(M) ® H*(M) —— H**(M,0M)

R
IR

N

Hop(M,0M) ® Hop(M,0M) Z

Proposition 2.6.2. The signature satisfies the following properties.
1. o(M + N) =0(M) + o(N).
2. o(M x N)=0(M)o(N).
3. If M = OW then o(M) = 0.

Proof. 1. The interesting case is when both M and N have dimension 4m. Since H*™(M + N,Q) =
H?™(M,Q) ® H*™(N,Q) we have the result.

2. Let W = M x N and m,n,p be the respective dimensions of M, N, W. If p is not divisible by 4,
then one of m or n is not zero module 4 and both sides of equality are zero.
Suppose that p = 4n, then by the Kiinneth theorem,

2k

H*(W,Q) =Y " H*(M,Q) ® H**~*(N, Q).
s=0
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2.6 The Hirzebruch Signature Theorem

This vector space decomposes into the subspaces
HS (M, Q) ® H2kfs(N’ Q) o) Hmfs(M’ Q) ® H2k+sfm(N’ Q)

for s < m/2.

Let {v;} and {w’} basis for H*(M,Q) and H'(N,Q) respectively, such that (v Uvj" ™% par) = s
for s # m/2 and (w} Uw} ™, uy) = di; for t #n/2.

Consider the group A = H% (M,Q) ® H=(N,Q) and A = 0 in the case m, n are odd. Recall that
two elements x,y € H**(W, Q) are said to be orthogonal if (xUy, ) = 0. Then A is orthogonal to
the subgroup B of H**(W, Q) which consists of all elements of the summation given by the Kiinneth
theorem in which no elements of A occur. As a basis for the group B we can take {v] ® w?k_s},
0<s<m,s#n/2. Now

(v; @ W) (v @ W), pw) = +1
if s+8 =m,i=14,7=7. And it is equal to 0 otherwise.
So with respect to this basis, the restriction of the bilinear form of W to B is represented by a ma-
trix with block £ ((1) (1)) on the diagonal and zero elsewhere. Therefore the signature of the restriction
to B is 0. Since A and B are orthogonal, o(Q) is equal to signature of the restriction of the bilinear
form to A.

Therefore o(W) = o(M)o(N) regardless if n and m are divisible by 4 or not.

. The interesting case is when M is the boundary of a oriented 4m + 1-manifold W. Let j : M — W.
Consider the diagram of homomorphism

J

H*™(W,Q)

H*(M,Q) — H**' (W, M,Q)

J

Hop1(W,V,Q) —— Hai(M,Q) Ho, (W,Q)

The rows parts are exact homology and cohomology sequences and the vertical arrows are isomor-
phism given by the Poincaré duality. Let A?* be the image of j* in H?*(M,Q) and let Koy, be the
kernel of j, in Ho(M,Q). Then A?* is the dual space of the quotient Haoy(M,Q)/ Koy, under the
duality between H2¥(M,Q) and Hap(M, Q).

Observe that for x € H?*(M,Q),
€ A% & i(x) € Koy

If bog, = dim Hop (M, Q) is the 2k — th betti number of V,

dim A?* = dim Ko, = boy, — dim Koy,

21



2.6 The Hirzebruch Signature Theorem

and 1
dim AQk = §b2k

If z = j*y € A%* then
(2%, par) = (%), maa) = (W7, Gupinr) = 0.

Therefore the set {z € H*(M,Q) : (22, uar) = 0} contains the subspace A%* of dimension $boy.
It follows that the bilinear from over M has equal number of positive and negative eigenvalues and
hence o(M) = 0.

O

As an important result from these properties is the fact that if M and N are manifolds such that M = N
in the oriented cobordism, then o(M) = o(NN). So ¢ induces a well defined Q-algebras homomorphism

c: %% 2Q - Q.

Now we construct another homomorphism. Let A = Q[ty,t2,...] be a graded commutative Q-algebra
where t; has degree i. Define an associated ring A to be the ring of infinite formal sums

a=ap+ay+---
where a; € A is homogeneous of degree i. Let AT be the subgroup of A of elements with leading term 1.

Definition 2.6.3. Let Kj(t1), Ka(t1,t2), K3(t1,t2,t3) -+ € A a sequence of polynomials where K, is
homogeneous of degree n. For a =1+aj +--- € AT we define K(a) € AT by

K(a) =1+ Ky(a1) + Kz(a,az) + - -
We say that K,, form a multiplicative sequence if K(ab) = K(a)K (b) for all a,b € A™.
Example 2.6.4. A simple example is provided by the sequence
Kn(ty, ... tn) = A,
for any A\ € Q.
A more interesting example is the following. Consider the power series expansion of the function

4t — —t e (—1)
tanh v/t 3 45 (=1)

CHIRE

where B; is the i** Bernoulli number. Set

2% B
A= (-1 i-l iy
(=1) (2i)!
For any partition I = (41,...,4x) of n, set A\f = A\;; -+ Mig. Now define polynomials L, (t1, - ,t,) € A

by
Ln(ty, - stn) = > Arsr(ty, ... tn)
I

where the sum is over all partitions of n and s; is the polynomial of (1.1.27]).
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2.6 The Hirzebruch Signature Theorem

Lemma 2.6.5. The set of polynomial L, form a multiplicative sequence.

Proof. From the definition of s; we have that L,, is homogeneous of degree n. Let a,b € AT, then

L(ab) = Arsi(ab)
= Z Z Sh (a)812 (b)

I Li,=I

= Z )\[1 )\12511 (a)sfz (b)

I Ix=1

= L(a)L(b).
O

Note that the coefficient of 7 in L,, is A, since the only s—polynomial containing that monomial is 5.

Definition 2.6.6. Let M be a manifold of dimension n. We define the L-genus of M, L(M) as follows.
If n is not divisible by 4, then L[M] = 0. If n = 4m, then we define

L(M) = <Lm(p1(M)a cee 7pm(M))a ,U/M>
Proposition 2.6.7. The assignation [M] — L(M) defines a Q—algebra homomorphism
L:0%2Q-Q

Proof. The additivity of the correspondence is immediate. From corollary (2.5.5)), follows that the L-
genus of a boundary is zero. This two facts together guarantee that L is well defined.

Consider a product manifold W = M x N, since the total Pontryagin class p(M x N) = p(M) x p(N),
up to elements of order 2, we have that

=

=

3
I

L(p(M)) x L(p(N))-

Therefore

O
The Hirzebruch signature theorem states that the two homomorphism constructed in this section coincide.
Theorem 2.6.8 (Hirzebruch Signature Theorem). Let M be an oriented manifold. Then o(M) = L(M).

Proof. Since both ¢ and L are Q-algebra homomorphism from 2%° ® Q to Q, it will suffice to show that
it is true on the set of generators of 2°Y ® Q, which by theorem (2.5.4)) they are the complex projective
spaces CP?",
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2.6 The Hirzebruch Signature Theorem

Recall that H?"(CP?",Z) is generated by a element 2", with z € H?(CP?",Z), then
(" U™, pepen) = (1) = 1.
Thus o(CP?") = 1.
Now, from [MS] p.177] we have that p((TCP?")g) = (1 + 2?)?"*L. Since the coefficient of t¢ in L; is \;,
then
L(1 4+ 2%) =1+ L(2?) + La(2%,0) + L(x2,0,0) + - - -
=1+ a2+t 4+

_ Va?
tanh v 2
x

tanhz’
Therefore,

L(p(TCP*")g) = L((1 +2?)*"*)
— I(1 4 22)2n

T 2n+1
o (tanhx) ’

Thus, L, (p(TCP?*")g) is equal the 2°" term in this expansion, and L(CP?") is simply the coefficient of
that term.

We compute that coefficient by methods of complex analysis. The coefficient of 22" in the Taylor expansion
of (z/tanh 2)?"*! by the Cauchy Integral Formula is

1 (z)Q”Hdz_l]{ dz
2mi tanh z 22+l 27 [ (tanh z)2n+1’

Make the substitution v = tanh z, so

Thus,

1 ]{ dz 1 j{(1+u2+u4+-~-)du
i

27i | (tanhz)2°+1 2 u2ntl
1 du
Tomi ) w
=1

So L(CP?") = 1 = ¢(CP?").
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2.6 The Hirzebruch Signature Theorem

Example 2.6.9. In particular, the coefficient s, of p,,(M) in L,, is given by

22m 22m—1_1B
so=1 and s, = ( ) Bm

@m)]
For example
ity = (29D )
oy = (ROD 0D
o) = (D
o) = (R )

where the dots indicate a rational function in pi (M), ..., pm—1(M).
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Chapter 3

Construction of Exotic Spheres

In this chapter we will construct manifolds which are homeomorphic to the sphere, but we will also show
that these manifolds are not diffeomorphism to the sphere. This kind of Manifolds are known as exotic
spheres and its existence showed that the “smooth Poincaré conjecture” does not hold. Mainly, we will
construct manifolds with an certain invariant non-zero (Signature, Arf-Kervaire) and with its boundary
homeomorphic (or just homotopic by Poincaré’s Conjecture) to a sphere. In suitable dimensions this fact
will guarantee that these boundaries are exotic spheres.

3.1 S3-bundles over S*

The idea is to construct spherical bundles S"~! — M — S™, and by the long exact sequence in homotopy
associated to this fibration, we get that M is a (2n — 2)-connected manifold, and one can guarantee that
this manifold is indeed homeomorphic to the sphere $2"~!. This was the first example of an exotic
structure over the spheres and it is due to J. Milnor [MI].

We start with some examples where the manifold M is actually the S?"~! sphere as we know it.
Example 3.1.1. 1. The trivial case is to consider the fibration S° — S* 5 S given by 7(2) = 22.

2. A more interesting example is the following. Describe S% as {(z1,22) € C? : |21]? + |22]? = 1} and
consider the map

hi: 8% =5 CUo0
(z1,22) — 21251

and compose it with the inverse of the stereographic map to obtain a map 7 : S® — S2. It is not
difficult to see that 7(z1, z2) = 7(e?21, e 2y) and thus we get a fibration

St 8% - 82
3. Recall that H denotes the quaternions and its elements are described by the form ¢ = a1 + asi +

azj + ask with a; € R. Also can be described by ¢ = ¢1 + ¢3j where ¢1, ¢y € C.
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3.1 S3-bundles over S*

Consider S = {(a,b,c,d) € C* : |a|? 4 [b|*> + |c|* + |d|* = 1}, and let ¢; = a + bj and g2 = ¢+ dj.
As in the previous example, consider the map

h:S” — C?U {0}

given by hi(q1,q2) = G145 1 and compose it with the inverse stereographic projection to get a
fibration
53— 87 — 5%,

If the base space of any fibration will be the sphere S™, there is an easy way to construct many different
fiber bundles, where the typical fiber will be a topological space F. Let G denote the group of homeo-
morphism of F and let f: S" ! — G.

We can construct the total space

Ef:(U0XF)|_|(U1XF)/N

where (u,y) ~ (u, for(u)y) is an equivalence relation and Uy = S™—{north pole}, U; = S™—{south pole}
and m: UyNU; — S™ ! is the projection onto the equator. Observe that if f is smooth, we can equip
E; with a smooth structure.

The following theorem identifies all equivalence classes of fiber bundles over a sphere.

Theorem 3.1.2. For a fixed fiber F', all F-bundles over S™ are isomorphic to one obtained by the
previous construction, and two such bundles are isomorphic if and only if the defining maps S"~! — G
are homotopic, where G denotes the group of homeomorphism of F. O

As an immediate corollary, we get that the F-bundles over S™ are classified by the group m,_1(G).

Now we will focus on the case B = S*, F = S and G = SO(4). So we can classify such bundles by
m3(SO(4)).

Proposition 3.1.3. There is an isomorphism between the groups m5(S0O(4)) and Z & Z.

Proof. We consider S as the unit sphere in the space of quaternions H. Define the map
SO(4) — 5% x SO(3)

given by ¢ — (¢(1),#(1)71¢), it is well defined since ¢ preserves the norm. Here we set SO(3) as the
subgroup of SO(4) which fixes 1, and so ¢(1)"1¢ € SO(3). We can construct an inverse

53 x SO(3) — SO(4)
by setting (u,?) > ¢y and @y 4 (v) = up(v).

So, there is a homeomorphism between SO(4) and S® x SO(3). Recall that SO(3) = RP? and there exist
a 2-sheeted covering 3 2 RP3 | getting a fibration

Zo — S — RP3,
thus Z = 73(S3) 2 3(RP3). Combining this result with the last homeomorphism we get then
m3(SO(4)) = 73(5%) @ 73(SO(3)) X Z @ Z.
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3.1 S3-bundles over S*

We can describe explicitly all the equivalence classes of S3-bundles over S* (with respect to the structural
group SO(4)).

The elements of 73(S?) can be represented by maps ¢, : S — S3, a € Z, which are of the form ¢, (z) = 22.

Since p is a finite cover, and actually an isomorphism on 73, the elements of 73(SO(3)) can be represented
by po ¢y : S — SO(3), b€ Z.

Therefore, for every (a,b) € Z ® Z, we have a map

S 83 x SO3) — SO(4)

2 = (2% p(2%) (v 20T

vz7?).
So we have proved

Proposition 3.1.4. The map

&7 — m3(SO(4))
(ha]) = ¢hj

where ¢p,;(2)(v) = 2"v27 is a group isomorphism.

Denote by &, the S3-bundle associated to the map ¢y, and let Ej; the total space of this bundle. Also,
we can consider a D*bundle associated to this map, as before, we consider the total space

Byj=(D*x S U(D*x 8/~

where (t,x) ~ (t,¢n;(t)(x)) if ||t|]| = 1. And so, the boundary of this bundle is a S3-bundle and dB),; =
Ey;

Example 3.1.5. 1. By = D* x §* and Eyy = 52 x 5% since in the equator of S*, ¢go = id.

2. Byg =2 HP — open disc and Ejy = S”.

Recall that HP™ is the quotient of H"* — {0} under the identification (u,v,w) ~ (zu, zb, zw) for
x € H*. There is a natural injection of HP' < HP? and there is also a natural fibration

H — HP? - {[0,0,1]} = HP!

given by 77 1([u,v]) = {[u,v,w] : w € H}.

Notice that HP! may be decomposed into two 4-disc
Dy = {[u, 1] : [Jul| <1}

Dy = {1, 0] : [Jol] <1},

28



3.1 S3-bundles over S*

sewn together through the reflection map [u, 1] + [1,u7!]. So the fibration is an H (or R*)-bundle
over S%.

The local trivialization over D; and D5 are given by
¢1: D1 x H — 77 YDy), ¢([u, 1], w) = [u, 1, w)
¢2: Dy x H— n 1 (Da), ¢([1,v],w) = [1, v, w].
The transition map acts over the set where [u, 1] = [1,v], that is, the equatorial S and we have
¢3 o1 ([u, 1], w) = o3 ' ([u, Lw]) = 63 ([Lu™ w™ ) = (1, 0], vw)
and so ¢>2_1¢1 is equal to ¢qg.
From the total space HP? — {[0,0,1]} we remove the open 8-disc {[u,v,1] : |[u]|* + |[v||* < 1}
centered at [0,0,1]. So we restrict the fiber over [u,v] to the set {[u,v,w] : [|w||* < ||u|]® + ||v]|*}
and so this fiber is homeomorphic to D* for [u,v] fixed.
Therefore, B1g =2 HP? \ open 8-disc. Moreover,E1g = dBjg = S” the boundary of the removed disc

We are almost done in the construction of exotic spheres, we use the total spaces of these S3-bundles
for special choosing of h,j and the Morse theory and characteristic classes will guarantee that these
manifolds will be homeomorphic but not diffeomorphic to the sphere S7 respectively.

Proposition 3.1.6. There is a group homomorphism between 7,,,_1(SO(n)) and 7, (Gr,(R*")).

Proof. Given f,g: S™ 1 — SO(n), a representative of the sum in m,,_1(SO(n)) is given by (f V g) op
where p : S~ — §m~1y §m=1 5 the pinching map.

Let Ff denotes the map S™ — Gr,(R?") which classifies the n-plane bundle over S™, induced by f.

We have the diagram

Sm—l 41), Sm—l VSm—l ﬂ, SO(TL)

FfVvFg

s SV §™ = Gir, (R?")

The lower row represents the sum [Ff] + [Fg] in 7, (Gr,(R*")). Since F(f V g) = FfV Fg, it also
represents F([f] + [9]).
O

Now we can compute the Euler and Pontryagin classes of the bundles Fj;
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3.1 S3-bundles over S*

Theorem 3.1.7. The Euler and Pontryagin classes of Ej,; are given by
e(Epj) =x(h+j)
pl(Ehj) = iQ(h — j)L
where « € H*(S*,Z) is the generator.

Proof. Notice that pi(Ey;) and e(Ey;) are linear in h and j. This is because the map which assigns to
(h,j) the class p1(Ep;), e(Ep;) € H*(S*, Z) are the composition of the group homomorphisms.

7% =5 m3(SO(4)) — ma(Gra(R®)) — HY(S*,Z)
where the last map are given by [f] — p1(f*(7*(R®))) and [f] — e(f*(7*(R®))) according to the case.
Consider the effect of reversing the fiber orientation. Interpreting S® as the unit quaternions, this is
equivalent to conjugation by the map v s =1, then
97 (ong)g(v) = (W™ M?) Tt = uTou"
and so Ej; becomes E_;_j,. DBut reversing orientation is detected by e and not by p;, and thus

e(En;) = —e(E_j_p) and p1(Epj) = p1(E_j_p).

So using linearity we have that

for some yet undetermined constants.

Apply the Gysin sequence to the bundle Fiy, yielding an exact sequence

(E10)

H3(Ero,Z) — H°(S4,Z) 2222 H4(S%,2) — H (B, Z).

We already know that Ejg = S7 and so the first and last groups above are zero. Thus e(E;) must be a
generator and so ky = +1.

Now we calculate ky. Here we use the computations of p;(S%) = 0 and p; (HP?) = 23 (see [MS]). Recall
that Big = HP? — D8, and so the map i : Byp < HP? induces an isomorphism * : H4(HP? Z) —
H*(By,7) by the exact sequence and excision applied to the pair (HP?, Byg). Similarly, the projection
By = 8% induces an isomorphism in the cohomology H*.

Let o denote the generator of H*(Bjg,Z) and 3 the generator of H*(HP?,Z). Consider the tangent bundle
T B1g which is naturally isomorphic to the Whitney sum of the sub-bundle of those vectors parallel to
the fiber, and those parallel to the O—section. That is, we have an isomorphism

TBig = " Evg @ 7*TS*.
So,
p1(TBio) = 7 (p1(Er @ T'SY))

=7 (p1(E10) + p1(TS*))
= 7" (p1(E10)) + 0.
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3.1 S3-bundles over S*

Since 7* and i* are isomorphism in H*

And thus ko = 2. O

Now we restrict to a special choosing of h and j. Set M, the total space Ej; with h4+j =1 and h—j =k,
the first condition will imply that Mj, is homeomorphic to S7 and the second one will show that M)}, is
not diffeomorphic to this sphere.

Theorem 3.1.8. M, is homeomorphic to S7.

Proof. Since by construction My, is a 7-dimensional compact manifold, we show that this manifold is
homeomorphic to S7 constructing a Morse function over M, with exactly two critical pointsE|

Recall that M}, has two charts Uy = (S* — {N} x %) 2 R* x $3 and Uy = (S* — {S} x §3) =2 R* x 3.
The transition function over Uy N Uz 2 R* — {0} x S? are then

U1 N UQ — U1 n U2
u u
(1:0) = (o ns () @)

Consider the map defined over the first chart

Re(v)
g(u,v) = —— u,v) € U.
(u,v) Tl (u,v) € Uy
And in the second chart define
R 1,,/—1
elwv ) (u',0") € Us.

u ) = ——_
90) = AT

Actually, g is well defined over the whole My, only we have to prove that g(u,v) = g(u',v") under the
change of coordinates (u,v) — (u',v) given by the transition map defined in Uy N Us.

!Theorem: Let M be a n-dimensional compact manifold. If there exist a Morse function f : M — R with only two
critical points, then there exists a homeomorphism of M onto S™ which is a diffeomorphism except possibly at one point.
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3.1 S3-bundles over S*

Since h +j =1 and for ¢ € Q Re(q) = Re(q™'), we have

_ U u
Re(ulvl 1) — RE(W¢}U(W( )))
u u u
= Re( () o))
(HUI|2 [l full )
— Re(i(i)lf(hﬂ‘)?ﬁl)
[l | ||l |
-1
= Re(v—)
|[ul
1
——Re(v™h)
[[ul|
1

= ——Re(v)

[[ul|

On the other hand
12 — u U 5 o—1, W \—hy2 _ 1
And this together with the previous equality,
o 0)) = Re(u'v'~1) _ [|lu|| Re(u'v'~1) _ Re(v) — g(u0).
7 V1 [[uo =12 V1 [ul[? VI [ul[? 7

Let us determine the critical points of f. Choose coordinates u = (z!, 22,23, 2%) and v = (y*,y2, >, y*)

with ||v|| = 1, then
g(u v) _ (1 _ (y2)2 _ (y3)2 _ (y4)2)1/2
’ (1 + (xl)Q + (12)2 + (1[}3)2 + (1'4)2)1/2 !

We find by calculation

99 _ —y’
oyt (1= (92?2 = ()2 — (WH)) (1 4 (21)2 + (22)? + (23)% 4 (24)?)1/2
99 (-2 - ") - wHH)Y?

9r' (14 ()2 + (22)2 + (23)2 + (24)2)3/2
and thus dg = 0 if and only if y* = 0, i = 2,3,4, ' = 0, i = 1,2,3,4 yielding the critical points
(u,v) = (0,£1). In the other chart can be verified that dg never vanishes and so we get no critical points
there.
By explicit calculation we find that
8%g 0% 0% 9%y _0
(yZ)Q |(07i1) - ayfayl ‘(O,il) = 8.’1?]8]/2 |(0,i1) = 91l Oz |(0,i1) -
82
29 oty = 1.
(xz)Z )

That is, the critical points are non-degenerated and so g is a Morse function with only two critical points,
thus M), is indeed homeomorphic to the sphere S7. O
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3.1 S3-bundles over S*

We define an invariant under cobordism A which will guarantee that M}, is in general non diffeomorphic
to the sphere S”.

Definition 3.1.9. Let M be a oriented 7-dimensional smooth manifold such that H3(M,Z) = Hy(M,Z) =
0 and suppose that exists an oriented manifold B such that 9B = M. Choose v € Hs(B, M,Z) and
p € Hy(M,Z) orientations with v|ys = p. Since i* H*(B, M,Z) — H*(B,Z) is an isomorphism, consider
the cohomology element (i*)~(py(B)) € H*(B, M).

Define

q(B) = ()~ (p(B))*, v)

and
A(M) =2¢(B) — o(B) mod 7.

Notice that for the case M = S7, we choose B = D® and so A(M) = 0 since H*(D?) = 0.

Proposition 3.1.10. A(M) does not depend of the choice of the manifold B

Proof. Let By, By be manifolds such that 9B; = 0By = M and let v, 5 be the respective orientations
which induces the correct orientation over M. We glue these manifolds through M to obtain a manifold
C without boundary.

Let v orientation on C' that induces the orientation v1 on By and —v5 on Bs. By the Hirzebruch signature

theorem
7p2(C) — p1(C)?

o) = (2

7V>

and by bilinearity
450(C) + (p1(C)*,v) = T(p2(C), v) = O(mod 7),

or equivalently
2(p1(C)?,v) — ¢(C) = 0(mod 7).

Consider the following diagram in which the isomorphism in the columns derived from the exact coho-
mology sequences and the isomorphism in the bottom row from the Mayer-Vietoris sequence

HY(By, M,Z) ® HY(Bs, M, Z) ~—— H*(C, M, Z)
i@is 5

H4(Bl7Z) @ H4(BQaZ)

HY(C,7)

So h is an isomorphism. For o € H*(C,Z) there exists (a1, az) € H*(B, M, Z) ® H*(Bs, M, Z) such that
7*h~ (a1, a2) = a. Then

<0427 V> = <j*h71(011, 042)27 V> = <h71(0417 Oz2)2,j*l/> = <Oé%, V1> - <Oé§7 V2>'
That is, the quadratic form of C' is the direct sum of the form of B; and minus the form of By, thus their
respective signatures satisfy

o(C) =0(By) —0(Ba)

33



3.2 Plumbing of Disk Bundles

Now in this process take a = (i) ~!(p1(B1)) and B = (i3) ' (p1(Bz)). By naturality of the Pontryagin
class, k*(p1(C)) = p1(B1) ® p1(B2), so

7" (p1(B1) @ p1(B2)) = p1(C).

Which implies that
<p1(C)2,V> = <0‘2’V1> - <62v1/2>
or equivalently
q(C) = q(B1) — q(B2).
Summarizing

(24(B1) — o(B1)) — (24(Bz) — 0(B2)) = 24(C) — o(C) = 0(mod 7).

Now we can use \ to distinguish between some of the M and S7. To that, we have this final result.
Theorem 3.1.11. (M) = k? — 1 mod 7.

Proof. Consider the bundle D* — By — S* we have an isomorphism H*(Bj,Z) = H*(S*,7Z), so
H*(By,7Z) is cyclic and o(By) must be equal to 1. Let v an orientation over By, such that o(By,) = 1.
Exactly as in the proof of theorem ([3.1.7)), there is a bundle isomorphism T'By, & 7*(M;, ® T'S*). Thus

p1(Bg) = 7 (£2ke + 0) = £2k7™¢.
Therefore

M My) = 2q(By,) — 0(By) = 2(£(2kn*1)?,v) — 1 = 2(4k*7*1%,v) — 1 = 8k* — 1 = k* — 1(mod 7).

Since A(M3) =1, A(M5) = 3 and A(M7) = 6.
Corollary 3.1.12. The manifolds M3, M5 and My are exotic spheres.

3.2 Plumbing of Disk Bundles

In this section, we will construct a manifold W4", with boundary a homotopy sphere, which will have
the following intersection matrix:

21 00 0 0O0O
12 10 -1 00 0
0o 1 2 1 0 000
A— 0 0 1.2 1 0 0O
0 -1 01 2 1 00
0 0 00 1 2 10
0 0 00 0 1 21
0O 0 00 0 01 2

This matrix satisfies det(4) =1 and o(A) = 8.

Recall that the oriented n-plane bundles over a sphere of dimension k are classified by the group
7:(SO(k)), and from each n-plane bundle we can obtain a n-disk bundle over S*.
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3.2 Plumbing of Disk Bundles

Definition 3.2.1. The plumbing of two disk bundles are made following this steps:

1. Suppose that we have two such disk bundles
a:D' > E,— S
B:D" — Ez— S
2. Choose open sets U, C S™ and U; C S*, by trivial locality condition, there are diffeomorphism
aly, =2 D" x D!
Blu, = D' x D"

3. Now use this diffeomorphism to make an identification between the fibre disk of «, D!, with the
base disk of 3, Dj;. (And viceversa)

This manifold is said to be the result of plumbing a and 5.

Choose diffeomorphism

91:D;—>DE 92D2—>D2
The diffeomorphism #; and 65 can be chosen to either both preserve or reverse orientation. We say we
plumb with sign +1 if both #; and 5 are orientation preserving, and sign —1 if both are orientation

reversing. Note that the result of plumbing two disk bundles is oriented compatible with the given ori-
entation, regardless of sign, if at least one of r or ¢ is even.

Remark. We can represent the plumbing by a diagram in the following way. For each bundle, draw a
dot, and label them with the corresponding element in 7;(SO(n)). Each time we plumb two of these
bundles together, join the appropriate dots with a line. Label this line with the sign of plumbing.

Restrict now to use only stably-trivial bundles with the dimension of the base space equals to the fiber
dimension(a even integer). Associate to the graph a symmetric matrix A over Z with even entries on the
diagonal.

Begin with n bundles over the k-sphere and arrange these in some order. Suppose that the i*” bundle is
represented by \;7 € m(BSO(k)) where 7 € m,(BSO(k)) represents the tangent bundle of S*. Suppose
that the plumbing between any two bundles have the same sing. Let a;; = 2);. For i # j let

Mo — P if the bundles i and j are plumbed together p times with sign +1
Y] =p if the bundles i and 7 are plumbed together p times with sign —1

Proposition 3.2.2. The matrix A defines a quadratic form on the free n-dimensional Z-module V. This
quadratic form is the same intersection form of the manifold by plumbing the original graph. O

Conversely, given any even quadratic form g on V', we can obtain a graph in the obvious way, and thus,
a manifold M with intersection form equal to this quadratic form.
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3.3 Algebraic Varieties With Singularities

Construction of the manifold

Let k = 2n, and choose a ordered basis (indexed by I) of the free Z-module, which has intersection matrix
A given at the beginning of this section. For each i € I, set a sphere S; = S?" and take the disk bundle
Let W be the 4n-manifold resulting by plumbing the above bundles with respect to the matrix A. Ob-
serve that by construction, W is stably parallelizable. The construction of W is equivalent to make a
plumbing along the graph

R

Where each vertex represents the tangent bundle of S27.

Lemma 3.2.3. The manifold W is (2n — 1)-connected and OW is (2n — 2)-connected.

Proof. See [Bw2, p.117] O
Theorem 3.2.4. W is a homotopy sphere.

Proof. By the Poincaré-Lefschetz duality, H;(W,0W,Z) = H?*~{(W, Z), so H;(W,0W, Z) =Hom(Ha,_1(W,Z), 7).

Thus, intersection matrix determines the natural homomorphism
H,(W,Z) — H;(W,0W,Z) 2 Hom(Hsy_;(W),Z)

Recall that Ho(W) =2 Z and H;(W) = 0 for ¢ # 0, 2k. Consider the exact sequence associated to the pair
(W, 0W).
0 — Hy(0W) 25 Hy (W) L5 Hy(W,0W) 2 Hy_ 1 (0W)

The map Hy (W) — Hp(W,0W) is given by the intersection matrix A, thus it is an isomorphism and
hence Hy(OW) = Hy—1(0W) = 0. So OW is a homotopy sphere. O

All the results in this section converge to:

Corollary 3.2.5. 0W is a (4n — 1)-dimensional exotic sphere. O

3.3 Algebraic Varieties With Singularities

We start recalling some results about the topology of joins. For all the details see [M2].

Definition 3.3.1. Let A;,---, A, be topological spaces. We define the join of this spaces as the set
A= A; *---x A, consisting by elements of the form

tia1 @ Dlpan
where t1,...,t, € R, t; >0,t1+---+t, =1, and a; € A;.

We consider A with the strongest topology such that the functions t; : A — [0,1], a; : t; *(0,1] — A; are
continuous.
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3.3 Algebraic Varieties With Singularities

Theorem 3.3.2. Let A, B, be topological spaces. We have
Hop(A*B,Z)= Y Hi(AZ)® Hj(B,Z)+ Y Tor(H;(A,Z), Hi(B,L)).

i+j=k i+j=k—1
Moreover, if B is arcwise connected and A is non vacuous, then A x B is simply connected. O
From the Hurewicz theorem it follows that

Corollary 3.3.3. The join of (n + 1) topological spaces is (n — 1)-connected. O

Now we can construct exotic spheres by considering complex algebraic varieties.

For a sequence of integers a = (ay,...,a,) with a; > 2, let f(z1,...,2,) = 2{* + -+ 2% be a complex
polynomial. Denote by V(f) the set of zeros of f and put X(a) = V(f) N S?"~L. Define Z(t) = f~1(t)
and V, = Z(1).

Remark. Since the derivative of f at a point z € C" is Df(2) = (a128* ", ..., an2%~1), the only critical
point is 0 and therefore the variety V(f) is an hypersurface with an 1solated singularity at 0.

The set ¥(a) is a smooth manifold of dimension 2n—3, since it is embedded as a codimension 2 submanifold
of §2n—1,
Let G, be the multiplicative cyclic group of order a; and w; its respective generator, consider the group

2mi
Gy = Goy X -+ X G, If we identify each G, with the group generated by {; = e “i the az-h root of

unity. G, acts over V, by the action (w]fl,... cwkn) (21, zn) = (EF 2y, ).
Lemma 3.3.4. Let U, = {z € V,, : z.”is a non negative real number}. Then U, is a deformation retract
of Vg.

Proof. Consider the complex hyperplanes X = {(z1,...,2,) € C" :0z; =1} and S; = {z € X : z; =
0}. Then, there is a retract of the system of hyperplanes (X, Sy,...,S,) over the simplicial system
(A1, 011, ..., 0,An_1), illustrated by the figure

Figure 3.1: Deformation retract of the simplicial system (As, 91A3, 92A3, 93A3)

1/a;

Using the change of variables & = z;'"™", we have the retraction of V,, over U,. O

Note that a element z € U, can be identified with elements of the form z; = u;|z;| with u; € G,. Setting
= |z;|%, then U, becomes the space of n-tuples

tiur D - Dtrun
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3.3 Algebraic Varieties With Singularities

with u; € Gg;, t; >0, Z?:o tj=1.

Thus U, can be identified with the join Gg, * - -+ * G, of the finite sets G, .
Therefore, from theorem (3.3.2)), we get

Proposition 3.3.5. V, C C" is (n — 2)-connected, and
Hy1(Va, Z) = Hy(Goy, Z) @ - - ® Ho(Go,, 7).
This is a free abelian group of rank r = [[(a; — 1). The other reduced homology groups are zero.

U, is an (n — 1)-dimensional simplicial complex which has an (n — 1)-simplex for each element of G,,.
The (n — 1)-simplex associated to the unit of G, is denoted by e. All other (n — 1)-simplices are obtained
from e by operations of G,. Thus we have for the (n — 1)-dimensional simplicial chain group

Cnfl(Ua, Z) = Jae

where J, is the group ring of G,. The homology group ﬁn,l(Ua) = H,_1(V,) is an additive subgroup
of Jue = Cp1(Uy) &2 J,.

The face operator J; satisfies 9; = w;0;, therefore
h=01—-wp) (1 —wpe
is a cycle. Thus h € H,_1(U,,Z). Tt follows that H,_1(V,,Z) = Jah.
Theorem 3.3.6. The map w — wh induces an isomorphism J, /I, = ﬁn(Va,Z) = J,h. Where I, C J,
is the annihilator ideal of h which is generated by the elements
1

L+w; +wi+-- +wj™

(j =0,...,n). Therefore w! - --wkrh is a basis of H,_1(Va, 7). O

Now we can compute the cohomology of ¥(a) to show that it is homeomorphic to the sphere.
The manifold Y = C" — V(f) is a deformation retract of $?"~! — ¥(a). The polynomial f induces a
fibration]

V,»v L
By the long exact sequence of homotopy associated to this fibration we get 71 (Y) 2 Z, 1,1 (Y) = Ju/I,.
Computing the homology of Y associated to the spectral sequence of this fibration with E2-term, the

homology with local coefficients
E? = Hy(C*, Hy(Va, 7).

For each t = €2™ ¢ S' who describes a circle, there exist an isotopy fp : Z(1) — £(t) defined by

fo(&) = e i &. Particularly, if ¢ = 1, we obtain the automorphism w = wy - - - wy,.

So from [DK] we get that E3°, = E2 . and the only no trivial groups are Ej , = Ef ; = Z and

E&n_l = coker(1 — w)

11t is known as the Milnor fibration theorem
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3.3 Algebraic Varieties With Singularities

Einq = ker(1 — w).

It follows that H;(Y,Z) = 0 for i # 0,1,n — 1,n. In the case i = n — 1, H;(Y,Z) = 0 if and only if
1—w:Jy/I, = Ju/I, is an isomorphism, that is equivalent to the condition that

det(1 — w) = £1.
Lemma 3.3.7. Define A,(t) = det(t- 1 — w). Then
Aut)= [T t—gr---am).
O<irp<ap

Proof. Consider J, /I, as the Tensor product ), _, Vi where Vj, is the Z-module spanned by {w}}. Thus
w: Jo/I, = Ju/I, can be seen as the map wy ® - - - @ w,, where wy, : Vi, — Vi is the multiplication by wy.

Tensoring everything with C, we find that for each al* root of unity, z; = f,lf the vector 1 4 xpwy +
oo+ (2w )t is an eigenvector of wy with eigenvalue a:,;l. Therefore the eigenvalues of w are all the
numbers z; ' -2t So

Auty= [T t—er---a).

0<ip<ag

In particular, A, (1) has positive real part. So we have the following result.
Theorem 3.3.8. X(a) is a homology sphere of dimension (2n — 3) for n > 4 if and only if A(1) = 1.

Proof. Notice that ¥(a) is a deformation retract of V/(f) — {0}. Consider the 2—codimensional manifold
X ={z € V(f) : z, = 0}. There is a surjection m(V(f) — X,) — m(V(f) — {0}) and a fibration
Va = V(f)— X, — C*, where a = (a1, ...,an,—1). Thus m (V(f) — X,) and so 71 (V(f) — {0}) is abelian.

Therefore, from the Alexander DualityEI
m1(2(a)) = Hy(3,,2Z) =2 H*"3(S* ! — %(a),Z) = H*3(Y,Z) = 0.
And using the Hurewicz theorem for i <n — 3
7i(2(a) = Hy(X4,Z) = H*"271(S?" 1 — %(a),Z) = H*""274(Y,Z) = 0.

In the case of i = n —2,n — 1, we use the Alexander duality and that H"~1(Y,Z) = H"(Y,Z) = 0 if and
only if A,(1) =1 (Observe that we avoid the case A, (1) = —1 using lemma (3.3.7))). O

So, by the h-Cobordism Theorem, we get that actually ¥(a) is homeomorphic to S2"~2. In the following
results we will compute the signature of this manifold, and in general, this manifold is not diffeomorphic
to the sphere.

Recall that V, is a (2n — 2)-dimensional oriented manifold without boundary, therefore there is a bilinear
intersection form well defined over H,_1(V,,Z).

L Alexander Duality: Let X C S™ be a compact and locally contractile space. Define Y = S™ — X. Then there is an
isomorphism Hy(Y,Z) = H*~9~1(X,Z)
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3.3 Algebraic Varieties With Singularities

Theorem 3.3.9. The signature of V,, is given by
o(V,) = Z (—1)ln/arttin/an],
0<jr<ay
where j = (j1,...,Jn) is a n—tuple of integers such that j, < ar and n > 5 odd.

Proof. Let n odd. As a basis of H,,_1(V,,Z) = J,/I, ® C use the eigenvectors introduced in the proof of
lemma (3.3.7)), namely

n
v = [T+ zpwp + -+ + (wpw) ™),
k=1
where xj, = €2™%/% and j = (ji,--- ,jn) is an n—tuple of integers with 0 < ji < ay.
By explicit calculation of the intersection numbers, we get

n

(v, 00) = (=D)VOD2A —ya) [T =)@+ oy + -+ (zaye)™ ). (3.1)
k=1
This is 0 unless ix + jr = a for all k. Therefore the vectors v; + v,—; and i(v; — ve—;) form a basis of

Jo /1, ® C, with respect to which the intersection matrix is diagonal.
These entries are given by

(0 + Va—js 05 + Va—j) = (i(0j = Va—j),i(vj = Va—j)) = 2(Vj; Va—j)

which are real numbers. Using formula (1) we get then

(0j,0a—5) = ()" P A =y o) [T — 2 s

k

— (1) (n—l)/2Hak Hl_xk +H1—xk)
= 2Re(—1)("~ 1)/2Hak Hl—x

— 9Re(—1)nD/2( _iemidn/ax gy (r Ik
e(— H ay)(—2ie sin(m o )

= (1;[ day sin(wa)>Re( i3+ ii))

Since sin (72 ) > 0 because 0 < ji < ag, then the above expression is positive exactly when
Re(—eﬂi(§+2’“ %)) <0,
or equivalently,

20 <Y E <1y
ai

Thus, the signature of V, is equal to 7, — 7_ where 7 is the number of n-tuples j = (ji,...,ji) such
that 0 < jr < ax and ZZ=1 % mod 2 lies between 0 and 1. This means that

o) = 3 (ca)fferiafe

0<jr<ag

40



3.3 Algebraic Varieties With Singularities

A careful computation gives:

Corollary 3.3.10. For a = (a1,...,a,) = (3,6k — 1,2,...,2) with n odd and k any integer.
o(V,) = (=1)(n+1/2g},
O

Define M,(¢) = Z(e) N D?" and 3,(c) = Z(g) N S?"~! for € > 0 small. So ¥(a) is diffeomorphic to ¥, (¢)
and it is the boundary of M,(¢). The interior of M, is diffeomorphic to Z(¢) = V,. Since the normal
bundle of M, is trivial, M, is stably parallelizable.

Corollary 3.3.11. The manifold 3(3,6k — 1,2,...,2) is a exotic (4n — 1)-dimensional sphere.
Later we will use the following results, for details see Appendix B and [BX].

Theorem 3.3.12. For the sequence a = (ay,...,an+1) = (d,2,...,2), the (2n — 1)-manifold X(a) is
diffeomorphic to the plumbing of d — 1 copies of the tangent bundle of S™ along the graph O

° ° P ® d— 1 vertices.

Theorem 3.3.13. The (4n — 1)-manifold constructed in section (3.2) is diffeomorphic to the manifold
$(3,5,2, ...,2). 0

Theorem 3.3.14. Consider the sequence a = (d,2,...,2) and set M, as above. Then the Arf-Kervaire
invariant of M, is equal to

c(M,) =

0 ifd=+1modS8
1 ifd==4+3mod3S8

Corollary 3.3.15. 3(3,2,...,2) is a exotic (2n — 1)-dimensional sphere.
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Chapter 4

Groups of Homotopy Spheres

4.1 Construction of the Group 0,

All manifolds in this section are assumed to be compact, oriented and differentiable.

Definition 4.1.1. Let M, N be two closed oriented n-dimensional manifolds, we say that M and N are
h-cobordant if the disjoint sum M + (—N) is the boundary of some manifold W and both M and —N are
deformation retracts of W. Notice that [M] = [N] as elements of the group Q-°.

Remark. Observe that if M is diffeomorphic to N, the oriented manifold M x [0,1] has as boundary
M+ (—M)= M+ (—N)

Recall the construction of the connected sum M#N of two n-manifolds M and N. Choose imbeddings
i1 : D" — M, is: D™ — N. Obtain M#N from the disjoint sum

(M —i1(0)) + (N —i2(0))

by identifying i1 (tu) with is((1 — t)u) for each unit vector u € S?~! and 0 < ¢+ < 1. Choose the orien-
tation for M#N which is compatible with that of M and N. This is possible since the correspondence
i1(tu) — i2((1 — t)u) preserves orientation.

Proposition 4.1.2. The manifolds M#N and M + N are h-cobordant.

Proof. Consider the cylinder M x I and let 41 : D"*! — M x I such that i1(0) = (m, 1) for some m € M.
Similarly choose ip : D" — N x I with i2(0) = (n,1). Now make an identification

(M x I) = i1(0)) + (N x I) = i2(0))
as above. This construction gives a manifold W with boundary (M#N) + (—(M + N)). O

As an immediate result of this proposition, we get that the Cobordism groups can be defined with the
connect sum as operation addition, instead of the disjoint union.

Lemma 4.1.3. The connected sum operation is well defined (does not depend of the choosing of the
imbeddings), associative, commutative up to orientation preserving diffeomorphism. The sphere S™ serves
as identity element.
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4.1 Construction of the Group O,

Proof. Let iy, : D™ — M imbeddings. The map = + (i) 1i;(2) defines a diffeomorphism of D"
onto itself which is a orientation preserving map. There is a diffeomorphism f : M — M such that
i1(t) = f(ir(¢)) if t € D™. Given two embeddings is,i : D™ — N we also construct a diffeomorphism
g : N — N with i(¢t) = f(i2(t)). Denote by M#N the connected sum associated to i1 and iz and
(M+#N)’ the connected sum associated to i} and i},. The above constructed diffeomorphism induces a
diffeomorphism

H: Ml#Mz — (Ml#Mg)/.

The associativity and commutativity is immediate from the definition.
The manifold M#S™ is diffeomorphic to M since S™ — i(D™) is diffeomorphic to int(D"). O

Lemma 4.1.4. Let M, M’ and N be closed and simply connected n—manifolds with n > 3. If M is
h-cobordant to M’ then M#N is h-cobordant to M'#N.

Proof. Let W a manifold with OW = M + (—M"'), where M and —M’ are deformation retracts of W.
Let A a curve in W form a point p € M to a point p’ € M’ with a tubular neighborhood diffeomorphic
to R™ x [0, 1]. So there is an imbedding

i:R"x[0,1] - W
with §(R" x 0) € M, i(R x 1) C M’ and i(0 x [0,1]) = A

Consider the manifold Z = (W — A) 4+ (N —i2(0)) x [0, 1] by identifying i(tu, s) with ia((1 — ¢t)u) X s for
each0<t<1,0<s<1,ueS" ! Zisa compact manifold with boundary M#N + (—(M'#N)).

Let see that these both boundaries are deformation retracts of Z. Consider the inclusion map
M-pLw-A

since n > 3, both of these manifolds are simply connected. On the other hand, the homology exact
sequence of the pair (M, M —p) and (W, W — A) shows that j induces isomorphism of homology groups.
Hence a homotopy equivalence. Using this and the Mayer-Vietoris sequence over the manifolds M#N
and Z we get that

H;(M#N,Z)~ H;(M —p,Z) ® H;(N — q,Z) 2 H;(W — A,Z) ® H;(N —i2(0) x [0,1],2) = H;,(Z,Z)
So the inclusion M#N — Z is a homotopy equivalence. Thus M#N is a deformation retract of Z.

Similarly, M'#N is a deformation retract of Z. O

Lemma 4.1.5. A simply connected manifold M is h-cobordant to the sphere S™ if and only if M bounds
a contractible manifold.

Proof. Suppose that M + (—S™) = dW. Fill the disk D"*! inside S™ to obtain a manifold W’ with
OW = M. Since S™ is a deformation retract of W, then it follows that W’ is contractible.

Conversely, if M = OW’ with W’ contractible, let D"~! < W' a local chart and remove its interior to

get a simply connected manifold W, with OW = M + (—S™). Mapping the homology exact sequence of
the pair (D"*!,S™) into the pair (W', W) the inclusion S™ — W induces a homology isomorphism we
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4.1 Construction of the Group O,

get that the inclusion S™ — W induces a homology isomorphism, hence S™ is a deformation retract of
W. Applying the Poincaré-Lefschetz duality

Hy (W, M) = H™ R (7, 57,

This proves that the inclusion M < W induces isomorphism of homology groups. Since M is simply
connected, M is a deformation retract of W. O

Lemma 4.1.6. If M is a homotopy sphere, then M+#(—M) bounds a contractible manifold.

Proof. Let H? C D? denote the half-disk consisting of all (¢sin(f),tcos(#)) with 0 <t <1,0< 6 <,
and let %D” C D™ denote disk of radius % Given an imbedding ¢ : D™ — M, construct a manifold W
from the disjoint union

1
(M — i(iD")) x [0,7] + S x H?
by identifying i(tu) x § with u x ((2¢t — 1)sin6, (2t — 1) cos§) for each 2 <t <1,0<6 < .

Therefore W is a differentiable manifold with boundary OW = M#(—M). Moreover, W contains M —
Int(i(3D™)) as a deformation retract and therefore is contractible. O

Theorem 4.1.7. Let ©,, denote the set of all h-cobordism classes of homotopy n—spheres. Then 6,, is
an abelian group under the connected sum operation.

Proof. By lemmas (4.1.3) and (4.1.4), the connected sum is a well defined, associative, commutative
operation. The class of the sphere S™ is the zero element. And by lemmas (4.1.5) and (4.1.6) each
O

element of ©,, has an inverse.

This group is called the n'"-homotopy sphere cobordism group, and in the following lines we investigate
the structure of this group.

Remark. By the h-cobordism theorem, for n > 5, study the structure of this group is equivalent to
study the group of classes of homotopy spheres under the relation of diffeomorphism. So, the number of
n-dimensional exotic spheres up to diffeomorphism is equal to the cardinal of the group ©,,.

Since in lower dimensions the differentiable structure of a manifold is completely determined by its
topology , we get:

Proposition 4.1.8. For n = 1,2, 3 the group 0, is trivial.

Proof. In the case n = 1, an element [M] € ©; is homeomorphic to S and it is known from differential
topology that the only connected and compact smooth 1-manifolds are (up to diffeomorphism) [0, 1] and
S1. So M is diffeomorphic to S!.

For the case n = 2, all oriented compact 2-dimensional manifolds are completely determined up to diffeo-
morphism by the Euler characteristic, that is, a 2-manifold M is diffeomorphic to S$? or to a connected
sum of T?’s. So if M is a 2-homotopy sphere it is diffeomorphic to S2.

The case n = 3, from [Mo], for every 3—dimensional manifold M there exist an unique differentiable
structure over M. Then if M is homeomorphic to S2 it is necessarily diffeomorphic to the sphere. O

Proposition 4.1.9. For n > 4, the group ©4,, 1 is non trivial. |©7| > 4.
Proof. From (3.1.12)), (3.2.5), (3.3.11)) and (3.3.15). O
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4.2 Construction of the Subgroup bFP,, ;1

4.2 Construction of the Subgroup bF,

Let (M, f) be a closed framed manifold M of dimension n. By Whitney’s embedding theorem there is
an embedding i : M — R"** for k > n. The Thom-Pontryagin isomorphism with the (B, f)-structure
associated to a normal framed manifolds works in the following way to obtain a map S¥ — S"*+* (Refer

to theorem (A.19))

A framing of TM @ €' induces a framing ¢ of v(i), since TM @ v(i) is trivial and using over the
Whitney sum (T'M & €') & v(i). By the tubular neighborhood theorem, set N a tubular neighborhood
in R"** around M which is diffeomorphic to the normal bundle of M. Consider a map from R"** to
Sk = R* U {00} which sends the complement of N to oo and sends each normal fiber to R¥ using the
trivialization of that fiber. The maps extends to S™** by sending co to co.

Thus we have a well defined element
p(M, f): S"tF 5 Sk e1l, = klim T i (S*).
— 00
Allowing the trivialization ¢ to vary, we obtain a set of elements

p(M) = {p(M,¢)} CIL,.

Lemma 4.2.1. The subset p(M) contains the zero element of II,, if and only if M bounds a parallelizable
manifold.

Proof. By the Thom—Pontryagin theorem,

p(M, ) ~0 iff [M]=0ec Q" iff M = 0W
for some framed manifold W. Since for compact manifolds with boundary the concept of be parallelizable
and stably parallelizable are equivalent, we are done. O

Lemma 4.2.2. If M is h-cobordant to N, then p(M) = p(N).

Proof. Let W be a manifold such that M + (—N) = W, and by Whitney’s embedding theorem, choose
a embedding of W in S"t* x [0,1] so that M < S"** x 0 and N < S"**¥ x 1. Let ¢ a framing of the
normal bundle of M, which extends to a framing 1 of the normal bundle of W since M is a retract of W.
The restriction ¢’ = 9|y gives a framing of the normal bundle of N. Therefore, (W, ¢) gives a homotopy
between p(M, ') and p(N,¢’). This construction could be made starting with a normal framing of N,
so we get that p(M) = p(N). O

Lemma 4.2.3. If M and N are stably parallelizable, then p(M) + p(N) C p(M#N)

Proof. Let Wy = M x [0,1] and Wy = N x [0,1], and set By = M x 1 and By = N x 0. Let H""! =
{x = (0, 21,...,2s) : |z| = 1,20 < 0} and D™ C H™*! the subset 79 = 0. Choose embeddings

ix : (H™ T, D™ — (Wy, By)

so that iy 0i] ! reverses the orientation. Denote W the manifold (W; —i1(0)) 4 (Wa—i2(0)), by identifying
i1 (tu) with io((1 — t)u) for 0 < t < 1 and u € S® N H™*L. Thus, W is a differentiable manifold with
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OW = M#N + (—M) + (—N) and M has the homotopy type M V N.

Choose an embedding W — S™*F x [0, 1], with a k large so that W N (S"** x 0) = (—M) + (~N), and
W N (S"F x 1) = M#N. So given two k-frames ¢; and ¢ on (—M) and (—N) respectively, we can
extend both them to a k-frames throughout W. Denote ¢ the restriction of this framing to M#N. So
we get an homotopy p(M, ¢1) + p(N, ¢2) and p(M#N, ). O

Since any homotopy sphere is stably parallelizable (see [KM] p.508]) we have,

Theorem 4.2.4. The set p(S™) C II,, is a subgroup of the stable homotopy group II,,. For any homo-
topy sphere 3, the set p(X) is a coset of this subgroup. Thus the correspondence ¥ — p(X) defines a
homomorphism p from 6,, to the quotient group II,, /p(S™).

Proof. Using the lemma together the identities
o S"#S™ = S implies p(S™) + p(S™) C p(S™) (p(S™) is a subgroup).
o S"#3 2% implies p(S™) + p(X) C p(X) (p(X) is a union of cosets of this subgroup).
o YSH#(—X%) ~ S™ implies p(X) + p(—X) = p(S™) (p(¥) is a single coset).
O

Definition 4.2.5. By lemmas (4.2.2) and (4.2.3)), the kernel of p : ©,, — II,,/p(S™) consists exactly of all
h-cobordism classes of homotopy n-spheres which bound parallelizable manifolds. Thus these elements
form a group which we denote by bFP, 1 C O,,.

Theorem 4.2.6. The group ©,,/bP, 1 is finite.

Proof. By theorem (4.2.4)), ©,,/bP, 11 is isomorphic to a subgroup of IL,, /p(S™). Since the groups II,, are
finite (1.2.2)), we get the result. O

In other words, The number of exotic spheres that do not bound parallelizable manifolds is finite.

4.3 Some Computations on bFP,

In this section we will use the theory of Spherical Modifications introduced in Appendix [A] which is a
powerful tool to study the homotopy type of the manifolds through a certain kind of “surgery”. The
important fact of this technique is that it is invariant under the boundary.

The group bP,+1, n odd
Theorem 4.3.1. Let n be an odd integer. Then 0P, 11 = 0.

Proof. Let M™! a compact framed manifold such that M is a homotopy sphere. By theorem (A.20)
and Poincaré duality, M is y-equivalent to a contractible manifold. O
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4.3 Some Computations on bP,,

The groups bFP; and bPy4

Lemma 4.3.2. Let M be a (k — 1)-connected manifold of dimension 2k, k > 3. Suppose that Hy(M,Z)
is free abelian with a basis {A1,..., A, 41, - -+, i ; Where

for all 4, 5. Suppose further that \; can be represented by disjoint embedded spheres with trivial normal
bundles. Then M is y-equivalent to a contractible manifold.

Proof. Let ¢o : S¥ — M be an embedding that represents the homology class A,,. Since the normal
bundle is trivial, o can be extended to an embedding ¢ : S¥ x D¥ — M. Let M’ = x(M,¢) and
My = M—int(p(S* x D¥)).

Consider the exact sequences
0 — Hy(Mo,Z) — Hy(M,Z) = Hy(M, My, Z) 2

Hy 1 (M, My, Z) 2> Hy (Mo, Z) — Hp(M') = 0
which by excision shows that Hy (M, My) is infinite cyclic and thus there is a diagram

7 Hy_1(Mo,Z)

Since {fm, Am) = 1 it follows that Hy_1(My,Z) = 0. From this we get the fact that My and M’
are (k — 1)-connected. The group Hy(My,Z) is isomorphic to the subgroup of Hy(M,Z) generated by
{M, -y Ams 1y ooy fhm—1}. The group Hy(M’,Z) is isomorphic to a quotient group of Hy(My,Z). It
has a basis {A},..., A1, p), 1)1} where each A, corresponds to a coset A\; + A\, Z C Hy,(M,Z). And

respectively with the p.
The manifold M also satisfies the hypothesis of this theorem, we only have to verify that

ERAY]

Each A, or u;- can be represented by a sphere embedded in M, and representing the homology class \;
or p; of M. Thus the intersection numbers in M’ are the same as those in M.

Iterating this construction m times, the result will be a k-connected manifold.
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4.3 Some Computations on bP,,

Theorem 4.3.3. The groups bFP;s, bPy4 are both zero.

Proof. Let M be a stably parallelizable manifold of dimension 2k such that OM is a homology sphere. By
theorem (A.20]) we can assume that M is (k— 1) connected, by Poincaré duality it follows that Hy(M,Z)
is free abelian and the intersection matrix has determinant +1.

Case k = 3,7. Since k is odd the intersection matrix is skew symmetric, hence there exists a basis for
Hy(M,Z), namely {A1,..., A\, f1, -« - b } With

The obstruction to framing any embedded sphere S* — M lies in m,_1(SO(k)) which is equal to 0 for
k =3,7. So by lemma (4.3.2) we have that M is x-equivalent to a contractible manifold. O

The group bPy,

Theorem 4.3.4. Let (M*", f) be a compact framed (2n — 1)-connected manifold with M a homotopy
sphere. Then (M, f) is x-equivalent into a contractible manifold if and only if o(M) = 0.

Proof. One direction follows from theorem (A.10) since o is an invariant under cobordism.

Conversely, suppose that o(M) = 0, by , one can suppose that M is (n — 1)-connected. Since
o(M) = 0, there is a basis {A1,..., A, 41, ., 4m . Each A; can be represented by an embedding
fi: §?" — M4, Since (\;, \;) = 0, the f; can be chosen to be disjoint. Let v(f;) be the normal bundle
associated to the embedding f;, then the obstruction [v(f;)] € 7a,—1(SO(2n)).

Recall that TS?" @ v(f;) = f7(TM), since TM and T'S*" are stably trivial, so is v(f;), that is i.[v(f;)] =

3

0 € m2,—1(SO(2n + 1)) where i : SO(2n) — SO(2n + 1) is the standard inclusion. We have a fibration,
SO(n —1) = SO(n) £ S™ which induces the following diagram in homotopy groups,

do (f2n—1)«

7T2n(52n) — Wgnfl(SO(Qn)) — 7T2n,1(SO(2ﬂ+ 1))

X2
(P2n—1)«

Ton_1 (S2n—1)

A computation gives

(p2n—1)[V(f)] = i, \)[S* 1] =0
[v(fi)] € ker((i2n—1)«) = im(day)
[v(fi)] € Im(dan) Nker((p2n—1)+) =
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4.3 Some Computations on bP,,

And since (pag—1)«dak is multiplication by 2, we get that [v(f;)] = 0, or equivalently, v(f;) is trivial.

Thus, by lemma (4.3.2)), M is x-equivalent to a contractible manifold. O
By the h-cobordism theorem follows

Corollary 4.3.5. Let ¥ be a homotopy sphere which bounds a stably parallelizable 4n-manifold M.
o(M) = 0 if and only if ¥ is diffeomorphic to S4"~1. O

Theorem 4.3.6. Let n > 1 and ¢t € Z. There exists a framed 4n manifold (M, f) with OM a homotopy
sphere and o(M) = 8t.

Proof. Let W be the manifold constructed in section 4.3. Set M = W# - - - #W (t-times). O

Definition 4.3.7. Let b, : Z — bPy, be the group homomorphism defined by b, (t) = [0W] where W is
the framed manifold with signature 8t and OW is a homotopy sphere.

Lemma 4.3.8. b, is well defined, that is, if Wy and W5 are as above, then 0W; is h—cobordant to 0W5.
Furthermore, b, is surjective.

Proof. b, is surjective immediately by theorem . In order to prove that by is well defined, it
suffices to show that the connected sum OW;#0W3 is cobordant to . Set W = Wi#(—W3), then
OW = OW,#0W,. Therefore, o(W) = (W) — o(W3) = 0, so by theorem W is x-equivalent to
a contractible manifold, that is W1 #0W, = 0. O

Corollary 4.3.9. There is an isomorphism of groups, bPy, = Z/ker(by,). O
To compute the group bPy,, we try to determine ker(b,,).

Definition 4.3.10. An almost framed manifold is pair (M, f) where f is a framing of TM|y;_y,) for
some x € M.

Proposition 4.3.11. ¢ € ker(b,) if and only if there exists an almost framed closed 4n-manifold with
signature 8t.

Proof. Suppose that ¢t € ker(b,). Then there is a framed manifold (M, f) with signature 8t, whose
boundary ¥ is a homotopy sphere that bounds a contractible manifold D. Set N = D + M identifying
the common boundary . Thus o(N) = 8¢ and T'N|y_(,} is parallelizable for any 2 € N.

Conversely, if N is an almost framed 4n-manifold with o(N) = 8t, let D' C N be any embedded
disc which contains the point z € N. Then N—int(D*") is a framed manifold with signature 8t and
ON = g4n—1, O

Recall that for any closed manifold M*", the Hirzebruch signature theorem states that
(M) = (La(pr(M), ..., pa(M)), piar)
where L,, is a rational function and p; (M) are the Pontryagin classes of M. Here we use that
Lo(x1,...,20n) = Sp&p + R(z1,. .., Zn_1)
and

_ 22n(22n—1 _ I)Bn
o= (2n)! ’
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4.3 Some Computations on bP,,

where B,, is the n'* Bernoulli number.

Therefore, if (M, f) is an almost framed closed manifold. Since p;(M) = 0 for i < n, o(M) = s,pr(n).
Define o, ; € Tan—1(SO(4n + 1) = Z) the obstruction to extending the almost framing f to a framing
of the bundle TM @ €'. Let x € M be the point where f is not defined. Set D*" a neighborhood of x
and let f’ be the usual framing of D4". So, o/ ¢ is the obstruction to the stable framings f and f’ agree
in D" — {x} = Gin—1

Now let 7 : M — BSO(4n + 1) be the classifying map of TM @ €. Since M — {x} is parallelizable,
T|apr—{«} is null homotopic and thus factors as

M —— BSO(4n +1)

|

Where ¢ maps to a point the complement of int D", So there is a 4n-stable bundle 1 over S with
¢*n =2 TM & €', and therefore [] = +o¢. (Here we use that in general the set k-plane bundles over
S™ (up to isomorphism) is in one-to-one correspondence with m,_1(SO(k))).

Theorem 4.3.12. If 7 is an stable vector bundle over S, p,(n) = +a,(2n — 1)![] where agm,+1 = 1
and as,, = 2.

Proof. By definition p,(n) = can(n ® C), and [n ® C] € m4,—1(U(N)) for some N large, actually,
n® C = i(n), where i : SO(N) — U(n). Thus, con(n ® C) € H™(S* 741 (Sty N-2041(C))) =
Tan—1(StN N—2n+1) is the obstruction to extending an N — 2n + 1 complex framing of (n ® C) to the
southern hemisphere of S**, and since [n® C] is the obstruction to extending the framing from the south-
ern hemisphere to S, it follows that ca,(n ® C) = p.(n ® C), where p : U(N) — U(N)/U(2n — 1) =
Stn,N—2n+1(C) is the projection.

So there is an exact sequence

Tan—1(U(N)) Py Tan—1(StN N—2n+1(C)) LN Tan—2(U(2k — 1)) = 7an—2(U(N))

From theorem ((1.2.1))
Z p_*> 7 — Z(2n—1)! —0

hence p. is the multiplication by (2n — 1)!.
On the other hand,
Tan—1(SO(N)) 2 T 1 (U(N)) 2% T (St v—2ns1)
this composition maps [n] to £ca,(n ® C) = £p,([n]), so we have proved that p,([n]) = £i.(2n — 1)![n].
It remains to show that i, is the multiplication by a,. We have an exact sequence (for the stable groups)
T4n(U/SO) = man_1(SO) 25 1401 (U) = man_1(U/SO)
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4.3 Some Computations on bP,,

Il

Since by 7T4n(U/SO) = T4n— Q(SO) = 0 T4n— 1(50) = T4n— 1(U) ~ 7 and 7T4n71(U/SO)
Tan—3(S0) and Tan—1(U/SO) = 74, _3(SO). The result follows from the fact that

0 n even

7T4n_3(SO) = {

Zo mn odd
O
We get the following results immediately from this theorem.
Corollary 4.3.13. e o) ¢ is independent of f.
o pp(M) =+a,(2n — 1)loar .
o o(M) = ian22"*1(22’;1—1)37101”,,0.
e M is stably parallelizable if o(M) = 0.
O

Definition 4.3.14. Let m and [ be non negative integers, and define J = J,,; : 7, (SO(1)) — mp41(S?)
as follows. If [a] € 7, (SO(l)), it can be represented by a family of isometries a, € SO(l) for each
z € §™. View S = (D™ x D) = §™ x D! + D™+ x §=1 and §' = D!/OD!. Let J[a] = au(y)
for (z,y) € S™ x D! and J(a)(D™*! x S'=1) = D!,

Proposition 4.3.15. J is a homomorphism.

Proof. Tts clear that o ~ 3 implies J(a) = J(B). Now, we can view J(a) as a map I™*! — S = D!/oD!
which on S™ x D! is given (x,y) — a,(y) and sends the complement of S™ x D! to dD'. A similar view
of 3, the sum J(«a) + J(B) is putting these two maps on either side of a hyperplane. Assume that «,
is the identity map for z in the northern hemisphere of S™ and f, is the identity for z in the southern
hemisphere of S™. So there is a homotopy from J(a) + J(8) to J(a + ) by moving the two S™ x D!
together until they coincide; such as the figure [£.1] illustrates.

.

Figure 4.1: Homotopy between J(a) + J(38) and J(a + 3)

Taking | — oo, by , we have a well defined homomorphism
In T (SO) — 1I1,.

It is commonly known as the J-homomorphism. O

Theorem 4.3.16. Let o € m,,—1(SO), There exists an almost framed closed manifold (M™, f) with
om,5 = « if and only if J(a) =0

Proof. Suppose that (M, f) is an almost framed closed m-manifold, we may assume that f is a framing
of M—intD™. Choose an embedding of M in R so that D™ is the northern hemisphere of S™ C R¥.
Let fo be the usual normal framing of D™ C R™ and f,, the framing obtained by mapping € S™ ! to
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4.3 Some Computations on bP,,

a(z) fo(x).

The Thom-Pontryagin construction applied to the framed manifold (S™7!, f,) gives +J(a). Since
a = opmyf, and f = flgm-1. we get that (S™71, f,) = d(M—int(D™), f), and therefore (S™1, f,)
is null cobordant. That is, J(a) = 0.

Conversely, suppose that J(a) = 0, and set S™~! C D™. Let fy be the standard framing of D™ C S™ for
N large. Since J(a) = 0, there is a framed manifold (N™, f) such that d(N,, f) = (S™7L, fa). Define
M = N + D™ pasting them throughout the boundary S™~1. Then (M, f) is an almost framed closed
manifold with o r = o O

Let j, be the order of the image of the homomorphism Z 2 m4,,_1(SO) ER 4, 1. We get the following
results.

Corollary 4.3.17. e The possible values for o, s are the multiples of j,,.

e The possible values for o (M) are the multiples of

an22n—1(22n—1 _ I)Bn]n
n

To finish the computation of the group bP*™ we use a difficult result, see [Ad].

Theorem 4.3.18 (Adams Theorem). Let J : 7, (SO) — m,,(S). If m # 4n, J is injective, moreover j,,
is equal to the denominator of B,,/4m. O

Corollary 4.3.19. If M is an almost framed closed manifold of dimension # 4n, then the almost framing

of M extends to a complete framing. O
Corollary 4.3.20. bPy, = Z;, where t,, = a,2*"~2(2?"~1 — 1)- numerator of B,,/4n. O
From corollary

Corollary 4.3.21. If g,, € bPy, denotes the generator, then the manifold 3(3,6k—1,2,...,2) represents
the element (—1)"kg,. O

The group bP;,, n odd
Some of the theory needed to compute this group is developed in Appendix

In order to compute bPs, for n odd and n # 3,7 (Recall that bPs = bP14 = 0 from theorem (4.3.3))). We
want to define a map
b, : Zo — bPs,

by b,(t) = OM, where M is any compact framed (n — 1)-connected 2n-manifold with OM a homotopy
sphere and ¢(M) = t.

Theorem 4.3.22. 1. Let My, M> manifolds as above, if ¢(M7) = ¢(Ms) then OM; is h-cobordant to
OMs.
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4.4 The group 0,,/bP, 1,

2. For each t € Zy there is a framed manifold M?2* such that 9M is a homotopy sphere and c¢(M) = t.
In particular this theorem implies that b is well-defined and is surjective.

Proof. 1. Let f; and fy be framings for M; and My respectively. Let (W, g) = (M, f1)#(Ma, f2) be
the framed boundary connected sum. OW = M #(—0Ms) and ¢(W) = ¢(My) + ¢(—(Ms)) = 0.
By theorem , W is x-equivalent to a contractible manifold. Thus OM;#0(—Ms) bounds a
contractible manifold.

2. If t =0, set M?* = D?*_ If t = 1, consider the exotic sphere constructed in (3.3.15)).
O

This shows that the group bPs, is zero or isomorphic to a cyclic group of order 2, In particular, given a
framed (n — 1)-connected 2n-manifold M with boundary the standard (2n — 1)-sphere, an almost framed
closed 2n-manifold N can be obtained from M by attaching a disk to the boundary such that they both
have the same Arf-Kervaire invariant; and viceversa. Since this is an invariant of framed cobordism, it
follows that:

bPa, =0 if and only if there exists a closed framed 2n-manofold M satisfying ¢(M) = 1.

Remark. Let M be a closed framed 2n-manifold. The Kervaire invariant problem is the problem of
determine for which values of n (odd) the Arf-Kervaire invariant ¢(M) is non-trivial. By theorem (1.3.3),
¢(M) is non-trivial when n = 1,3,7. Browder [Bwl| showed that ¢(M) is non-trivial if and only if
n # 2! — 1. Mahowald and Tangora [MT] showed that c¢(M) is non-trivial when n = 15. Barrat,
Mahowald and Jones [BJM| showed that ¢(M) is non-trivial when n = 31. Finally, Hill, Hopkins and
Ravenel [HHR] showed that ¢(M) is trivial for all n # 1,3,7,15,31,63. Thus only the case n = 63
remains open.

Summarizing,

Theorem 4.3.23.

0 ifn=1,3,7,15,31, (and possibly) 63
bP2n = .
Zo otherwise

4.4 The group 6, /bP, .1

Let ¥" be a homotopy sphere embedded in R”t* and f a framing of its normal bundle. The Thom—
Pontryagin construction applied to (3, f) is an element T(X, f) € m,4%(S*), which is an invariant of the
normal framed cobordism class of (X, f). Recall that T((Z, f)#(Z, f) =T(Z, f) + T(X', f).

Lemma 4.4.1. Let f: X" — SO(k) and let o = [f] € m,(SO(k)). If f' is the modification of f through
a (compare the proof of (4.3.16])).

T(S,F) =T(, f) + J().
Proof. Since T(S™, f) = £J(«), where f, is the modification of fy of S™ through «. Thus
(27 f/) = (27 f/)#(SWL’ fO) = (27 f)#(S’rL7 fot)

Applying T to both sides of the equation we get the result. O
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4.4 The group 0,,/bP, 1,

Corollary 4.4.2. T(X) = {T(%, f), f is a framing of X" C R"**} is a coset of J(m,(SO(k))) in
7Tn+k(5k).

Define T : ©,, — Coker(J,,), where J,, : 7,(SO) — 7,(5) is the J-homomorphism.
Theorem 4.4.3. bP, 1 = ker(T).

Proof. ¥ € bP, 41 if and only if ¥ bounds a parallelizable manifold. T'(X) = 0 if and only if there exists
a normal framing f of ¥ such that (X, f) bounds a normally framed manifold. O

We have an exact sequence

0 — bPyyy — O, > Coker(J,).
Corollary 4.4.4. O, is a finite group.

Consider the following group.
0 if nodd
Gn=<7Z ifn=0mod4
Zo ifn=2mod4

And the homomorphism b,, : G,,+1 — O,

0 if n 41 odd
by (t) = < [OM™]where o(M) =8t ifn+1=0mod 4
[ON"tlwhere ¢(N) =t  ifn+1=2mod 4

With OM, 0N homotopy spheres. From the computations made on section Im(b,) = bP,41.
Define now a map ¢, : 2" — G,, as follow. For a class [(M, ¢)] € Qf", set

0 if n odd
d(M,p) =< o(M) ifn=0mod4
c(M,p) ifn=2mod4

¢ is well defined since ¢ and ¢ are invariants under cobordism. And ¢(M,¢) = 0 if and only if (M, ¢) is
framed cobordant to a homotopy sphere.

Let ¢/ = ¢ o T~1. so there is a commutative diagram

. @
Qfr —— G,

Note that ¢'(Im(J,)) =0, so ¢’ induces a map ¢"” : Coker(J,) — Gy,
In other words, we have proved.
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4.4 The group 0,,/bP, 1,

Theorem 4.4.5. The sequence

1"

Grsr 25 0, 5 Coker(J,) 25 G
is exact. ]

Corollary 4.4.6.
O, /bP11 = ker(¢”).

Remark. If n is odd, ¢” = 0 since G,, = 0. If n = 0 mod 4, we have shown that ¢” = 0. If n = 2 mod
4 then ¢” = 0 except in the cases n = 6,14, 30,62 and possibly n = 126, by theorem (4.3.23)).

This summarizes in the following result.

Theorem 4.4.7. For n > 4, n # 2 mod 4, there is an exact sequence
0 — bPn41 — O, — coker(J,) — 0.
If n = 2 mod 4, the exact sequence is given by
0="bPpi1 — Op — Jy 2 Zoy — bP,.

Where h is nonzero for n = 6,14, 30,62 and possibly n = 126. O
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Chapter 5

Miscellaneous

In this chapter is included the computation of |6,| in specific cases using the results given in chapter
So we need to compute the order of the groups |bP, 11| and |6,,/bP,,+1]; these groups require the order of
the groups II,,, m,(SO) and I'm(J,) (refer to [Ad]) and the sequence given by the Bernoulli numbers.

Bernoulli Numbers

n |1 2 3 4 5 6 7
B, |t L L L & ST
n 6 30 42 30 66 2730 6

The J-homomorphism

The order of the groups II,, was taken from |[Rv]. Using (1.2.1]) and (4.3.18)) we have,

n |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
mT(SO)] |2 1 oo 1 1 1 o0 2 2 1 o 1 1 1 o
ITL,,| 2 2 24 1 1 2 240 4 8 6 504 1 3 4 960
[Im(J,)] |2 1 24 1 1 1 240 2 2 1 504 1 1 1 480
|Coker(J,)) |1 1 1 1 1 2 1 2 4 6 1 1 3 4 2
n |16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
T (SO) [ 2 2 1 oo 1 1 1 00 2 2 1 oo 1 1 1
ITL,,| 16 4 16 528 24 4 4 3144960 4 4 12 24 2 3 6
[Im(Jy)] 2 2 1 24 1 1 1 65520 2 2 1 24 1 1 1
|Coker(J,)| | 2 8 16 2 24 4 4 48 2 2 12 1 2 3 6
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Groups of Homotopy Spheres

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
bP,4] |1 1 1 1 1 1 28 1 2 1 992 1 1 1 8128 1 2
©./bPyq| {1 1 1 1 1 1 1 2 4 6 1 1 3 2 2 2 8
N 1 11 1 1 1 28 2 8 6 992 1 3 2 16256 2 16
n | 18 19 20 21 22 23 24 25 26 27 28 29 30
6P, 1| 1 252°—1) 1 2 1 691-2"72T7—1) 1 2 1 222%—-1) 1 1 1
10, /bP, 11| | 16 2 24 4 4 48 2 2 12 1 2 3 6
N 16 29°2°—1) 24 8 4 2073-25(2'—1) 2 4 12 2128 _-1) 2 3 6

Recall that the class of exotic spheres up to diffeomorphism in dimension 4 does no coincides with ©,,
so the number of classes of 4-dimensional exotic spheres is still unknown.
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Appendix A

Spherical Modifications and Framed
Cobordism

Notice that the manifold SP x S? can be considered either as the boundary of S? x D! or the boundary
of DPT1 x §9. Given any imbedding of SP x D9t in manifold M of dimension n = p + g + 1, a new
manifold M’ can be constructed by removing the interior of S? x D9t and replacing it by the interior
of DP*! x §9 pasting them by the common boundary SP x S9.

Definition A.1. Let ¢ : SP? x D91 — M a smooth, orientation preserving imbedding. Let (M, ©)
denote the quotient manifold obtained from the disjoint sum

(M — o(SP x DY) 4 (DPF! x §9)

by identifying ¢ (u, tv) with (tu,v) for each u € SP, v € §9, 0 < t < 1. If M’ denotes any manifold which
is diffeomorphic to x(M, ) (with orientation preserving diffeomorphism) we say that M’ is obtained
from M by the spherical modification x(¢) of type (p+ 1, + 1)

The boundary of M is equal to the boundary of x(M, ¢). Setting the notation D = {0} and S~! =), a
spherical modification of type (0,74 1) over M is the manifold M + S™. Furthermore, if M' = x(M, ¢) is
obtained by a spherical modification of type (p+1, ¢+ 1) then M can by obtained from M’ by a spherical
modification of type (¢ +1,p + 1).

Definition A.2. Let M, N two compact and oriented manifolds without boundary of the same dimen-
sion. M is x-equivalent to N if there exists a sequence My, M1, ..., My with M = My, N = M, and such
that each M; 1 can be obtained from M; by a spherical modification.

Theorem A.3. Two such manifolds are y—equivalent if and only if the belong to the same cobordism
class.

Proof. See [M3]. O
From the Thom-Pontryagin theorem we have

Corollary A.4. The Stiefel-Whitney numbers, Pontryagin numbers and the signature of a compact
manifold M are invariant under spherical modifications. O
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Let M be a connected manifold of dimension n and ¢ : SP x D"P — M an imbedding. Denote by
A € m,(M) the homotopy class of the map ¢|grxo.

Lemma A.5. Let M a connected manifold of dimension n, with n > 2p+2 and M’ = x(M, ¢) a spherical
modification of type (p+ 1,n —p) of M. Then the homotopy groups m;(M") are isomorphic to m;(M) for
i < pand m,(M') = m,(M)/A, where A denotes a certain subgroup which contains A.

Proof. Set ¢ =n — p — 1. Note that p < q. Let X denote the space M + (DP*! x D+1) by identifying
(u,y) with ¢(u,y) for (u,y) € SP x DT, The subset W U (DP*! x 0) is a deformation retract of X.
Observe that this last subset is obtained from W by attaching a (p + 1)—cell using the map u — ¢(u, 0),
So the inclusion map m;(M) — m;(X) is an isomorphism for ¢ < p and is onto for i = p. Moreover, the
homotopy class A of the attaching map lies in the kernel of this homomorphism.

A similar argument shows that m;(M’) — m;(X) is an isomorphism for i < ¢, since p < ¢ we get the
result combining with the above paragraph. O

Proposition A.6. Let £ be an m-plane bundle over a CW-complex X of dimension p < m. Then £ is
a trivial bundle if and only if £ @ €' is trivial.

Proof. An isomorphism ¢ @ ! =2 ¢m*! gives rise to a bundle map f from £ to the bundle y™(R™*1),
since the base space X has dimension p less than the dimension of the base space of v, it follows that
f is null homotopic, and hence £ is trivial. O

Lemma A.7. Let M be a n dimensional compact manifold which is stably parallelizable, and let A €
mp(M) where p < n/2. Then there exists an imbedding ¢ : SP x D"~? which represents A\. Moreover, ¢
can be chosen so that the manifold x (M, ¢) will also be stably parallelizable.

Proof. Since p < n/2, X\ can be represented by an imbedding g : S? — M. Let T'SP be the tangent
bundle of SP and v9t! denote its normal bundle in M. Then the Whitney sum TSP @ v9t! can be
identified with ¢f{T'M which is trivial by hypothesis.

Since TSP @ €' is trivial,
Pl it TSP @it el @ @t

To prove the fact that ¢ makes the manifold x (M, ¢) stably parallelizable, we need to extend a trivial-
ization f of TM @ €' to a trivialization of TW @ €. Where

W = (M x I)+ (DF! x D"F)
identifying S¥ x D"~* with ¢(S* x D"7%) x 1, OW = x(M, @) — M.

The obstructions to this extension lie in the cohomology groups H**1(W, M, 7, (SO(n + 1))) which is
non zero only in the case k = p. Thus the only obstruction to extend f is a cohomology class

o(p) € HPYH (W, M, 7,(SO(n +1))) = 7,(SO(n + 1)).

So the spherical modification x (M, @) is stably parallelizable if and only if the obstruction o(p) = 0. Let
a: 8P — SO(q + 1) be a differentiable map, and define

0o SP x DI 5 M

by @a(u,v) = @(u,a(u)(v)). Thus ¢, is an embedding which represents the same homotopy class
A € my(M) as ¢. We will show that,
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o 0(pa) = 0(p) + s«(a) where s, : 1,(SO(¢+ 1)) = 7, (SO(n + 1)) is induced by the inclusion.

Since p < ¢, the homomorphism s, : m,(SO(q + 1)) = 7,(SO(n + 1)) is onto. Therefore, we can choose
o so that

7(pa) = o(p) + 5.(@)

is zero. O

Theorem A.8. Let M be a compact, connected, stably parallelizable of dimension n > 2k. Then M is
Xx-equivalent to a (k — 1)-connected stably parallelizable manifold N.

Proof. By lemmas and 7 choose an imbedding ¢ : S* x D"~! — M to obtain a stably
parallelizable manifold M’ = x (M, ) such that w1 (M’) is generated by fewer elements of 71 (M). Thus
after a finite number of steps, we can obtain a stably parallelizable manifold M" which is 1—connected.
Then, after a finite number of steps we obtain a stably parallelizable 2—connected manifold M” . We
continue on this way to obtain a (k — 1)— connected stably parallelizable manifold N. O

Definition A.9. A framed manifold (M, f) is an oriented stably parallelizable smooth manifold M
together with a framing f of TM @ €. A framed spherical modification x(p,g) of (M, f) is a spherical
modification x () of M together a framing g of TW @ €' satisfying g|as = f ® t'. Where

W = (M x I)+ (DF! x D"7F)
identifying S¥ x D"~* with ¢(S* x D) x 1. Thus OW = x(M, ) + (—M).

Restricting g to OW — M = M’ we obtain a framed manifold (M’, f’). So we can consider a corresponding
definition of framed cobordism. Two closed oriented framed manifolds (M, f), (M’, f') are framed cobor-
dant if there is a compact framed manifold (W, g) such that OW = M + (—M’) and g = f, glm = -
The set of framed cobordism classes of framed closed manifolds are an abelian group under the operation
of connected sum.

If f is homotopic to f’ then (M, f) is framed cobordant to (M, f').

Lemma A.10. Let i : M — R""* be an embedding and let N be a large integer. If f is a trivialization
of TM @ €V, there exists a trivialization f’ of v(i) such that f @ f' ~ t¥*™7+k and this f’ is unique
up to homotopy. Conversely, if f’ is a trivialization of v(4), there exist an unique (up to homotopy)
trivialization f of TM @ €V such that f @ f/ ~ tN+ntk,

Proof. Let €* and 7! plane bundles over the manifold M with [ > n + 1, such that ¢* @ n! = #+1. Tt is
sufficient to show that if f is a trivialization of £¥ then there exists a trivialization f’ of n!, unique up to
homotopy, such that f @ f' ~ tF+i,

Now, f defines a map ¢ : M — Stiyik, since Sty is (I — 1)-connected (1.1.32)) and n < [ implies
that ¢ is null homotopic by considering the obstruction classes. Thus by the homotopy lifting property
of Stri11 — Stiyi,, ¢ extends to a map M — Sty 4. So f exists.

Suppose that g is another trivialization of ' with f @ g ~ t**!, then f’ and g differ by a map a : M —

SO(l). Thus i o« ~ 0 where ¢ : SO(I) — SO(k +1). But iy : m(SO(1)) = m;(SO(k + 1)) for i <1 —1.
Since n < 1 —1, i,.[a] = 0 implies [a] = 0; that is, g ~ f’. O
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Definition A.11. Suppose that (M7, f1), (Ma, f2) are normally framed manifolds (fx is a trivialization
of the normal bundle v(iy), iy : M; — RN embedding). (M, fi) and (Ms, f2) are normally framed
cobordant if there is a manifold W with OW = M; + M, and an trivialization g of the normal bundle
v(i) of an embedding i : W — RY x I such that int W NO(RY x I) = () and i|ps, = ix, and g|ps, = f-

Theorem A.12. The set of normally framed cobordism classes of closed normally framed manifolds of
dimension n, forms a group (fr,n) under the connected sum. Then

Q(fr,n) = QS = lim m, 1 (S%).
k—o0

Proof. The first isomorphism follows from applying lemma ({A.17)), the second one is using the Thom-
Pontryagin theorem to a (B, f)-manifolds where the (B, f)-structure is given by By = {*}. Since T'Bj, =
Sk we have the result. O

Theorem A.13. Let M be a compact, connected, framed manifold of dimension 2k + 1, £ > 1 such that
OM is either vacuous or a homology sphere. Then M is x-equivalent to a k-connected manifold N.

Proof. By theorem (A.15)) we have that M is x-equivalent to a M’ (k — 1)-connected manifold. We use
the fact that OM is either vacuous or a homology sphere to prove that M’ can be y-equivalent to a
k-connected manifold. See [KM| Lemma 6.6].

O
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Appendix B

The Arf—Kervaire Invariant

The Arf-Kervaire invariant is a cobordism invariant of framed (4% + 2)-manifolds, taking values in Zs.
This theory was initially studied by Kervaire in [K].

The intersection product Hy(M,Z) ® Hi(M,Z) — Z is skew symmetric and has determinant +1. Choose
a basis of Hy(M), namely {a1,...,a;,B1,..., Bk} such that the intersection matrix is

(%)

By the Hurewicz theorem, the elements «; can be represented by disjoint embedded spheres. Let f :
Sk — M an embedding representing an element o € Hy,(M). Thus

FH(TM) =TSk @ v(f).
Let g be a framing of €" & T'M, it gives a framing f*g of €" @ f*(TM). If fy denotes the usual framing
of =1 @ TD*H1, fo|gr gives a framing of (¢"~! @ TD*H1)|gx = " @ TSk,
The isomorphism,
@ fITM =" dTS* @ v(f)

implies that the framing f*g is a trivialization of the bundle €" @& f*TM = ¢* & T'S* @ v(f). Thus the
framing fo|gx assigns to each point in S* an element of Stoktn, ktn-

So, we can define an element
O(f) € T (Staksn ktn) = Z2 k odd

which depends on M, g, f. Actually, if two embeddings fi, fo represent the same element «, then
v(f1) =2 v(f2) and therefore we can define an element ¢(a) € Zsy independently of the choice of embedding.

Theorem B.1. 1. For k # 3,7, ¢(«) = 0 if and only if v is trivial.

2. For k = 3,7, v(f) is trivial and ¢(a) = 0 if and only if the spherical modification on M through
f:8% x D¥ — M can be framed.

Proof. 1. Consider the exact sequence in homotopy associated to the bundle SO(k) — SO(2k +n) —
St2k+n,k+n-
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TR(SO(R)) 5 e (SO(2k + 1)) 25 mu(Starnisn) 2 oo (SO(K)) 25 .

From the definition, 9¢(a) = [v(f)] € mx—1(SO(k)). For k # 3,7, i, is surjective so p, is 0 and J
is injective. This implies

¢(a) = 0if and only if 0¢(a) = [v(f)] = 0.

Define ¢o : Hi(M,Z2) — Z2 as the map

Hy(M,Zs) — Hy(M,Z) @ Zo 2% 7,.

Definition B.2. Let V be a finite dimensional vector space over Zs and (,) a symmetric bilinear form
on V. A quadratic function is a function v : V' — Zs such that

Pla+B) = ¢(a) +9(B) + (a, B).

¢ is called nonsingular if (,) is nonsingular. If aq,..., ., 81, ..., By is a basis satisfying (a;, a;) = 0 and
(Bi, Bj) = dsj, the Arf invariant of (1, (,)) is defined by

A(p, (,)) = Zwai)w(ﬂi).

The definition is independent of the choice of this basis.

Proposition B.3. Let M, ¢ be as above. For o, f € Hy(M,Z)

d(a+ B) = ¢(a) + ¢(B) + (o, B) mod 2.
O

Corollary B.4. ¢ : Hi(M,Z2) — Zs is a nonsingular quadratic function associated to the intersection
pairing.

Definition B.5. Let (M?*, f), k odd, be a compact framed (k — 1)-connected manifold with Hy,(M,Z)
free abelian. The Kervaire-Arf invariant ¢(M, f) is defined as

A(gbg, <, >( mod 2)) € Zo.

For ¢ # 3,7, ¢(M, f) does not depend on f.

Theorem B.6. Let (M?* f), k odd, be a compact framed (k — 1) connected manifold with M a
homotopy sphere. Then (M, f) is x-equivalent to a contractible manifold if an only if ¢(M, f) =0. O

Corollary B.7. Let ¥ a homotopy sphere which bounds a stably parallelizable 2k-manifold M with k
odd. Then ¢(M, f) = 0 if and only if ¥ is diffeomorphic to S?*~1. O.
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